
Contextualizing Privacy Decisions
for Better Prediction (and Protection)

Primal Wijesekera1, Joel Reardon2, Irwin Reyes3, Lynn Tsai4, Jung-Wei Chen5,
Nathan Good5, David Wagner4, Konstantin Beznosov1, and Serge Egelman3,4

1University of British Columbia, Vancouver, BC
2University of Calgary, Calgary, AB

3International Computer Science Institute, Berkeley, CA
4University of California, Berkeley, CA

5Good Research, Berkeley, CA
{primal,beznosov}@ece.ubc.ca, joel.reardon@ucalgary.ca, ioreyes@icsi.berkeley.edu,

lynntsai@berkeley.edu, {jennifer,nathan}@goodresearch.com, {daw,egelman}@cs.berkeley.edu

ABSTRACT
Modern mobile operating systems implement an ask-on-first-
use policy to regulate applications’ access to private user data:
the user is prompted to allow or deny access to a sensitive
resource the first time an app attempts to use it. Prior re-
search shows that this model may not adequately capture user
privacy preferences because subsequent requests may occur
under varying contexts. To address this shortcoming, we im-
plemented a novel privacy management system in Android,
in which we use contextual signals to build a classifier that
predicts user privacy preferences under various scenarios. We
performed a 37-person field study to evaluate this new per-
mission model under normal device usage. From our exit
interviews and collection of over 5 million data points from
participants, we show that this new permission model reduces
the error rate by 75% (i.e., fewer privacy violations), while
preserving usability. We offer guidelines for how platforms
can better support user privacy decision making.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; K.6.5 Management of Computing and Infor-
mation Systems: Security and Protection

Author Keywords
Privacy; mobile permissions; access control; user study

INTRODUCTION
Sensitive resources (e.g., address book contacts, location data,
etc.) on mobile platforms are protected by “permissions” sys-
tems. That is, before a third-party application (“app”) can
access protected data, it must receive permission from the
platform, which in turn is controlled by the end-user. Orig-
inally, Android permissions were presented as install-time
Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3173842

ultimatums that were unsuccessful at achieving their goals [13,
8]. More recently, Android started using an ask-on-first-use
(AOFU) model. In AOFU, the user is explicitly asked to grant
a permission via a dialog box when an app first attempts to
access the permission-protected resource. This approach gives
the user a little more contextual information: e.g., it may be
curious that a text messaging app needs to use the microphone,
but knowing that the request occurred after the user tried to
use a speech-to-text feature clarifies the likely rationale.

By design, AOFU takes the user’s decision at one moment and
then uses it in perpetuity for all future requests from that app
for that permission, unless the user navigates several layers
of settings to change it. This has been shown to be error
prone: it mispredicts users’ preferences, resulting in privacy
violations [38, 39]. AOFU fails to account for the contexts
in which future requests arise. Users are nuanced and they
vary their decisions based on a variety of factors, such as the
visibility of the requesting app (i.e., whether it was in use
when it requested a permission), what the user was actually
doing at the time, as well as a variety of other factors.

We implemented and evaluated the usability of a novel mo-
bile privacy management system that builds heavily on prior
theoretical work. To resolve the longstanding challenges of
mobile privacy management, Wijesekera et al. [39] proposed
applying machine-learning (ML) to dynamically manage app
permissions, whereas Tsai et al. [36] proposed a user interface
design for that system. Both proposals were motivated by
Nissenbaum’s theory of Privacy as Contextual Integrity [28],
but neither has been heretofore implemented and evaluated
on real users in situ. We implemented these systems on the
Android platform and performed a field study to evaluate their
effectiveness at aligning app privacy behaviors with users’ ex-
pectations. The ML model runs entirely on the device and
uses infrequent user prompts to retrain and improve its accu-
racy over time. When the ML model makes a mistake, the
user interface is available to support the user in reviewing and
modifying privacy decisions, thereby retraining the classifier
to make fewer mistakes in the future.

https://doi.org/10.1145/3173574.3173842

We performed a 37-person field study to evaluate this permis-
sion system, measuring its efficacy and how it interacted with
participants and third-party apps. We issued each participant a
smartphone running a custom Android OS with our permission
system that used a built-in classifier, which participants used
as their primary phones for a one-week study period. This
produced real-world usage data from 253 unique apps, which
corresponded to more than 1,100 permission decisions. Over-
all, participants denied 24% of permission requests. Our data
show that AOFU matched participant privacy preferences only
80% of the time, while the new contextual model matched
preferences 95% of the time, reducing the error rate by 75%.

In summary, the contributions of this work are as follows:

• We implemented the first contextually-aware permission
system that performs permission denial dynamically, which
is an advancement over prior work that only performed
offline learning or did not regulate permissions in realtime.

• We show that AOFU’s failure to account for context results
in privacy violations 20% of the time.

• We show that by applying our contextual model, we are
able to reduce privacy violations by up to 75%.

RELATED WORK
Substantial prior work has shown the ineffectiveness of mobile
phone permission systems. For ask-on-install (AOI) prompts,
earlier studies showed that users frequently did not pay atten-
tion to prompts or comprehend them [20, 16, 37, 13]. This
lack of understanding hinders users’ ability to address poten-
tial risks that arise from allowing access to sensitive resources,
and may evoke users’ anger after they learn about inappropri-
ately accessed data [12]. Another critical flaw is that users
are not given contextual cues about how apps might exercise
the permissions granted to them. For example, users were sur-
prised to learn that apps can continue to access those resources
even when not being actively used [35, 19].

Prior research has used information flow tracking techniques
to understand how apps use sensitive data in the wild [9, 14,
21]. While these techniques shed light on how apps access and
share sensitive data, none gave users a mechanism to indicate
their preferences regarding the access of sensitive data. Other
approaches did involve users, but those efforts required high
degrees of manual involvement likely beyond the skillset of
average users (e.g., [18, 1, 33]).

Nissenbaum’s theory of “contextual integrity” suggests that
permission models should focus not on sensitive resources, but
rather on information flows—from source to destination—that
are likely to defy the user’s expectations [27]. In an attempt
to systematize Nissenbaum’s theory, Barth et al. [4] extended
the theory to smartphones. They suggest that it is important to
consider the context in which the resource request is made, the
role played by the requesting app under the current context,
and the type of resource being accessed. Wijesekera et al. [38]
performed a field study to understand how users perceive
sensitive resource usage by apps in the wild. They found that
users consider the visibility of the requesting app in deciding
whether a particular information flow is acceptable.

Machine learning (ML) has recently gained traction as a
promising approach to predict user privacy decisions. ML can
significantly reduce the user’s involvement in decision making
and therefore reduce habituation—the problem where users
see so many notifications that they become desensitized to
future requests and thus make poor decisions. Previous work
in this direction developed techniques to cluster users [32, 22,
25] and built recommender systems [40]. Liu et al. clustered
users by privacy preferences, then subsequently predicted user
preferences to apps’ future permission requests using the in-
ferred cluster [24]. The authors developed a privacy assistant
to recommend privacy settings to users. The biggest drawback
in these works, however, is their lack of consideration for the
rich signals that context provides, which has been found to be
a significant factor in decision making [38, 39].

Access Control Gadgets (ACGs) are a proposed mechanism to
more closely associate sensitive resource accesses to particular
UI elements [31, 30, 26], so users are more aware when those
accesses occur. Examples of this are the “file chooser” and
“photo picker” widgets. While such an approach helps users be
better aware of resource accesses, it has two main limitations.
First, apps are known to legitimately access resources when
the user is not actually using the device, and therefore the user
cannot receive visual cues. Second, the frequency of permis-
sion requests made by smartphone apps makes systematic use
of ACGs impractical [38].

After Android’s switch to the AOFU permission model, re-
search followed that investigates how users perceive it. Bonné
et al. looked into understanding what motivates users to (i)
install an app, (ii) allow or deny an AOFU prompt, and (iii)
uninstall an app [5]. Other works investigate the consistency
of user decisions across app categories under this permission
model [3, 2]. Closely related are two works that proposed us-
ing contextual cues to better predict and protect user data [29,
39]. In both of these works, contextual cues are used to build
a machine-learning-based permission model to increase the
accuracy of the system as compared to the default Android
permission model. However, Olejnik et al. [29] only focused
on a selected set of apps and resources.

In this paper, we build on our prior work [39, 36], in which
we proposed using a ML-based permission decider that con-
siders context. In that work, we trained an offline classifier
by using participants’ responses to runtime prompts. While
we demonstrated that the ML approach holds promise, the
training data was solely based on participants’ stated privacy
preferences, without considering the impact that dynamically
denying permissions might have on app functionality. That
is, if participants deny an unexpected permission request, but
then discover that it impacts app functionality, they may wish
to reconsider that decision and grant the permission. Thus, the
realtime classifier approach requires real-world validation.

IMPLEMENTATION
We implemented a complete ML pipeline that included mecha-
nisms to allow users to review and modify their decisions [36];
ways to mask resource denial from apps to keep them function-
ing; and a classifier that takes surrounding contextual signals
to predict user preferences for each permission request [39].

Figure 1: A screenshot of a permission request prompt.

This usability study is a more accurate assessment of how
the system behaves in the wild than the previous investiga-
tions, which relied on measuring user preferences rather than
consequential privacy decisions.

A Local Classifier
Wijesekera et al. implemented an offline model and suggested
this could be deployed as a remote web-accessible service in
order to shift compute costs from the mobile device to a more
powerful dedicated server [39]. We note, however, that this
design requires sending privacy-relevant data off of the smart-
phone, which creates a larger attack surface and increases
system costs and complexity. It also creates significant se-
curity risks if the server responsible for making decisions is
compromised or is trained with spurious data.

To mitigate these security and privacy issues, we implemented
and integrated a Support Vector Machine (SVM) classifier
into the Android operating system as a system service. We
ported the open-source implementation of libsvm to Android
6.0.1 (Marshmallow) [6], and built two additional system-level
services to interface with the SVM: the SVMTrainManager,
which trains the model with user-provided privacy preferences
through prompts (Figure 1); and the PermissionService, which
uses the SVM to regulate apps accessing permission-protected
resources and prompts the user for cases where the model
produces low-confidence predictions. These services are in-
tegrated into the core Android operating system, and neither
are accessible to third-party apps. On average, model training
takes less than five seconds. We instrumented all Android
control flows responsible for sharing sensitive permission-
protected data types to pass through this new pipeline.

Bootstrapping
We deployed our trainable permission system along with a
generic model that was pre-trained with the real-world permis-
sion decisions of 131 users, collected from our prior work [39].
This ensured that a new user has an initial model for making
privacy decisions. This initial model, however, is inadequate

for accurately predicting any particular individual user’s pref-
erences, because it simply has no knowledge of that particular
user. Despite that, Wijesekera et al. showed that their model
only needs 12 additional user-provided permission decisions
before the model attains peak accuracy. Given this, our system
requires that the user make 12 decisions early on to train the
initial model to that particular user’s preferences.

The initial 12 decisions are selected based on weighted
reservoir sampling. We weigh the combination of
app:permission:visibility1 by the frequency that these are ob-
served; the most-frequent combinations are the likeliest to
produce a permission request prompt (Figure 1). The intuition
behind this strategy is to focus more on the frequently occur-
ring permission requests over rarer ones. We used these same
prompts for validating our classifier during the field study.

Feature Set
The implemented model uses four different contextual cues
for making a decision on a resource request: the name of the
app requesting the permission, the app in the foreground at
the time of the request (if different than the app making the
request), the requested permission type (e.g., Location, Cam-
era, Contacts), and the visibility of the app making the request.
In a pilot study (discussed later), our system implemented
the full feature set described by Wijesekera et al. [39]. This
design, however, resulted in a noticeable reduction in device
responsiveness as reported by multiple study participants. We
subsequently removed the “time of request” feature for the
second phase of our study. The removal of the time feature
from the ML enabled the platform to cache a greater number of
ML decisions, reducing the overhead stemming from running
the ML for each different permission request.

We aggregate feature values to calculate two other features, A1
and A2, which represent how often users have denied permis-
sions under different circumstances. The aggregate feature A1
comprises the requesting app, the permission type, and the vis-
ibility of requesting app. The aggregate feature A2 comprises
the foreground app, the permission type, and the visibility
of the requesting app. When an app requests a permission-
protected resource, the ML uses the requested permission type,
visibility of the requesting app and the respective values for
A1 and A2 to produce a decision. During the learning phase
(i.e., the first 12 prompts), the system updates A1 and A2 based
on user responses. The ML uses current feature values to
retrieve respective denial rates from a previously-calculated
set. For new apps, we use the median of A1 and A2 as feature
values. Wijesekera et al. [39] showed—using both 5-fold cross
validation and leave-one-out validation—that this technique
did not lead to an overfitted model.

Sensitive Resources
Previous work by Felt et al. argued that certain permissions
should be presented as runtime prompts, as those permissions
guard sensitive resources whose use cases typically impart

1“app” is the app requesting the permission, “permission” is the
requested resource type, and “visibility” denotes whether the user is
made aware that the app is running on the device.

contextual cues indicating why an app would need that re-
source [11]. Beginning with Android 6.0 (Marshmallow), the
OS designated certain permissions as “dangerous” [15], and
now prompts the user to grant the permission when an app
tries to use one of them for the first time. The user’s response
to this prompt then carries forward to all future uses of that
resource by the requesting app.

Our experimental permission system uses both Felt’s set of
recommended permissions for runtime prompts and Android’s
own “dangerous” ones. We did, however, opt to omit a few
permissions from the resulting set that we viewed as irrelevant
to most users. The INTERNET and WRITE_SYNC_SETTINGS
permissions were discounted, as we did not expect any partici-
pant (all recruited locally) to roam internationally during the 1-
week study period. We eliminated the NFC permission because
previous work demonstrated that few apps operate on NFC
tags. Our system ignores the READ_HISTORY_BOOKMARKS
permission, as this is no longer supported.

We regulate all attempts by apps to access resources protected
by any of the 24 permissions we monitored. We avoid false
positives by monitoring both the requested permission and the
returned data type.

Permission Denial
Making changes to the permission system carries the risk of
app instability, as apps may not expect to have their resource
requests denied [10]. If denying permissions results in fre-
quent crashes, then users are likely to become more permissive
simply to improve app stability. We therefore designed our
implementation with this concern in mind: rather than sim-
ply withholding sensitive information in the event of a denied
permission, our system supplies apps with well-formed but
otherwise non-private “spoofed” data. This enables apps to
continue functioning usefully unless access to the permission-
protected resource is critical to the app’s correct behavior.

For example, if an app requests access to the microphone, but
our permission system denies it, the app will still receive a
valid audio stream: not an actual signal from the microphone,
but that of a pre-recorded generic sound. (In our implementa-
tion we used a loop of a whale song.) This design allows apps
to operate on valid data while still preserving user privacy.

Permission-protected databases (e.g., contact lists and calen-
dars) require finer-grained regulation under our permission
system. For instance, an app may have a legitimate need to
access the contact list. Under the stock Android permission
system, an app is either able to read all contacts or no contacts.
We improve upon this by adding a notion of provenance to
each entry: every contact list item contains a field that records
the app that created the entry. If our permission system denies
an app access to the contact list, the app is still able to write
into the contacts database and read back any entries that it pre-
viously created. Apps without these database permissions are
effectively placed in a sandbox, in which they can still carry
out valid operations on their own versions of the data. They
neither produce an exception nor obtain all the information
in the database. We allow full access to the databases only to
apps that are granted the appropriate permission.

Figure 2: The recently allowed app activity (top left), a list
of installed apps and their associated permissions (top right).
Permissions can be always granted, granted only when in use,
or never granted (bottom).

The system, however, does not spoof any resource that might
have collateral privacy issues. The system does not spoof the
phone’s IMEI, a phone number, or any other device identifiers.
This is because any randomized number may be a legitimate
ID for another device, thus creating a privacy violation.

Contextually Aware Permission Manager
Because any classifier will make mistakes, it is crucial to pro-
vide a mechanism for users to review and alter decisions made
on their behalf. Mobile operating systems have configuration
panels to manage app permissions, but these fail to provide
users key information or options to make informed decisions.
We previously proposed a new interface to solve this problem,
evaluated it using interactive online mock-ups, and found that
the design significantly improved the user experience over the
stock configuration panel [36]. As part of the current study,
we implemented that interface in Android.

Figure 2 shows our contextual permission manager. We built
it to run as a system-space app, similar to Android’s Settings
app. Our permission manager has three main objectives: (i) to

display all recent permission requests and the corresponding
“allow” or “deny” decisions from the ML model; (ii) to allow
users to review and change app permissions; and (iii) to display
all the resources an app can access.

When users set preferences (rules) in the permission manager,
before making a ML decision, the platform checks to see if
the user has set any rules for the current request; if a match
is found, rather than going to the ML, the platform will apply
the rule to the permission request accordingly. The system
does not use these rules to train the ML model, as it is hard to
capture the contextuality behind these changes, so the platform
cannot create any of the contextual features to train the ML.

VALIDATION METHODOLOGY
We tested our implementation by performing a field study with
37 participants. Our goals were to understand how third-party
apps and end-users react to a more restrictive and selective
permission model, as compared to the default AOFU model.

For a period of one week, each participant used a smartphone
(Nexus 5X) running a custom version of the Android OS
(based on 6.0.1) built with our new permission system. Dur-
ing the study period, all of a participant’s sensitive data was
protected by the new contextually-aware permission model.

Participant Privacy Preferences
We used the Experience Sampling Method (ESM) to under-
stand how participants want to control certain sensitive re-
source accesses [17]. ESM involves repeatedly questioning
participants in situ about a recently observed event. We proba-
bilistically asked them about an app’s recent request to access
data on their phone, and how they want to control future simi-
lar requests (Figure 1). We treated participants’ responses to
these ESM prompts as our main dependent variable in the train-
ing phase and then to validate the accuracy of the decisions
that the trained classifier was automatically making.

Each participant during the study period responded to 4
prompts per day, and at most one per hour. The prompting was
divided into two phases. The first phase was the bootstrapping
phase, which we described earlier, to train the classifier. The
second phase was the validation phase, which was used to
measure the accuracy of the ML model. In addition to the vali-
dation phase prompts, participants might also have occasional
prompts for low-confidence decisions made by the ML; a de-
tailed discussion on low-confidence decisions is provided later.
During our study period, only 4 participants ever experienced
low-confidence prompts.

Recruitment
We recruited participants in two phases: a pilot in May 2017
and the full study in August 2017. We placed a recruitment
ad on Craigslist under “et cetera jobs” and “domestic gigs.”2

The title of the ad was “Smartphone Research Study,” and
it stated that the study was about how people interact with
their smartphones. We made no mention of security or privacy.
Interested participants downloaded a screening app from the
Google Play store, which asked for demographic information
2Our study was approved by our IRB (#2013-02-4992)

and collected their smartphone make and model. This step
also made sure that all of our participants were Android users.
We screened out those who were under 18 or used CDMA
providers, because our experimental phones were only GSM-
compatible. We collected data on participants’ installed apps,
so that we could pre-install their free apps prior to them visit-
ing our laboratory. (We only encountered paid apps for a few
participants, and those apps were installed once we setup their
Google accounts on the test phones.) These apps ranged from
games to sensitive financial apps.

We scheduled participants who met the screening requirements
to do the initial setup. Overall, 63 people showed up to our
laboratory, and of those, 2 were rejected because our screen-
ing app did not identify some CDMA carriers. The initial
setup took roughly 30 minutes and involved transferring SIM
cards, setting up their Google and other accounts, and making
sure they had all the apps they used. We compensated each
participant with a $35 gift card for showing up.

During the pilot phase, out of 20 people who were given
phones, 14 participants had technical issues with the phone
preventing them from using it, leaving only 6 participants with
usable data. During the main phase, out of 42 people who
were given phones, we had the following issues:

• 4 participants misinterpreted our ESM prompts so we fil-
tered out their prompt responses;

• 5 participants suffered from a bug in the code that inhibited
the validation phase of the ML;

• 2 participants performed factory resets on the phone before
returning it, which deleted our experimental data.

This left 31 participants with usable data from the main phase.
We combined the 6 participants with usable data from the
first phase with the 31 from the second phase to produce our
sample of 37 users, since we did not alter the study between
phases (other than fixing technical issues). All our results are
drawn from log data and interview responses from those 37
users. Of that sample, 21 were female and 16 were male; ages
ranged from 18 to 59 years old (µ = 34.25, σ = 9.92).

After the initial setup, participants used the experimental
phones for one week in lieu of their normal phones. They
were allowed to install, use, and uninstall any apps that they
wanted. Our logging framework kept track of every protected
resource accessed by an app, along with the contextual data
surrounding those requests. All the logged events were stored
compressed in the local system.

Exit Interview
When participants returned to our laboratory, we first copied
the log data from the phones to make sure that they had actually
used the phone during the study period. We then administered
a semi-structured exit interview, which had four components:

• New Permission Manager UI—We asked participants to
show us how they would use the UI (Figure 2) to block
a given app from accessing background location data, as
well as how difficult they found it. We also checked our
data to see how they interacted with the UI during the study
period, and asked them about the circumstances for those

interactions. The objective of this task was to validate the
design objectives of the UI, including whether they use it to
resolve issues stemming from resource denial.

• Permission Prompts—We asked participants questions
about permission prompts they had encountered during the
study. We asked why they allowed or denied permission
requests and also how they felt about the prompts. We asked
them to rate their experience with the prompts across 3 dif-
ferent categories: level of surprise, feelings of control, and
to what extent they felt the new system had increased trans-
parency. The objective of this section was to understand the
impact of the runtime prompts.

• Permission Models—We asked participants questions
about their perspectives on the privacy protections in An-
droid. We asked how much they understood the current
system. We then explained our new system, and asked how
they felt about letting the ML act on their behalf. The objec-
tive of this section was to understand how much participants
actually understood the new permission model.

• Privacy Concerns—Finally, we asked participants how
they usually make privacy decisions on their mobile de-
vices, how serious they are about privacy, how much they
are willing to pay for privacy, and demographic questions.

Three researchers independently coded 144 responses to the
Permission Prompts and Permission Model questions (the other
questions involved either direct observations or reporting par-
ticipants’ responses verbatim without the need for coding).
Prior to meeting to achieve consensus, the three coders dis-
agreed on 17 responses, which resulted in an inter-rater agree-
ment of 86.43% (Fleiss’ κ = 0.747).

After the exit survey, we answered any remaining questions,
and then assisted them in transferring their SIM cards back
into their personal phones. Finally, we compensated each
participant with a $100 gift card.

RESULTS
We collected 1,159 prompt responses from 37 participants.
A total of 133 unique apps caused prompts for 17 different
sensitive permission types. During the study period, 24.23%
of all runtime prompts were denied by participants. Most
(66%) of these prompts occurred when the requesting app was
running visibly. Our instrumentation logged 5.4M sensitive
permission requests originating from 253 unique apps for 17
different permission types. On average, a sensitive permission
request occurred once every 4 seconds.

In the remainder of the paper, we describe the shortcomings
of the existing AOFU permission model, both in accuracy3

and in aligning with users’ expectations; we show how our
proposed system has vastly greater accuracy in inferring users’
privacy preferences and applying them towards regulating app
permissions; and we show that is does this with minimal im-
pact on app functionality. Finally, we present results from the
exit interviews regarding participants’ perceptions about the
training prompts and the privacy management user interface.

3We report the median accuracy among participants because all distri-
butions were heavily left-skewed. The mean is not representative, and
therefore the median better captures the improvements in practice.

Status Quo Problems
In the “ask-on-first-use” (AOFU) model, the user receives
prompts to grant individual permissions, but only the first time
an app requests them. Requesting these permissions at runtime
allows the user to infer the potential reason for the request,
based on what they were doing when the request occurred (i.e.,
context). AOFU’s shortcoming, however, is that it naïvely
reapplies the user’s first-use decision in subsequent scenarios,
ignoring different contexts [38].

We previously attempted to measure the accuracy of the AOFU
model by collecting users’ responses to runtime permission
prompts, without actually enforcing them by denying apps
access to data [39]. Thus, the accuracy rates reported by
that study may not actually be valid, since users may elect to
change their permission-granting preferences, if they result
in a loss of app functionality. Thus, we evaluated the perfor-
mance of the AOFU approach (in current use by Android and
iOS) by presenting participants with permission prompts that
actually resulted in the denial of app permissions.

During the study period, each participant responded to combi-
nations of app:permission more than once. As AOFU is deter-
ministic, the decision the user makes for a prompt becomes the
system’s decision in perpetuity. Because our learning phase
prompted participants the first time an app requested data—
which is the same set of circumstances under which AOFU
would have prompted them—we can interpolate from these
first prompts to calculate AOFU accuracy. Thus, no control
condition is needed, because this interpolation allows us to
gather the same data. We use this data to measure how often
AOFU matches the user’s preference in subsequent requests.

Our data show that the AOFU permission model has a median
error rate of 20%: in one-fifth of app requests for permission-
protected resources, participants changed their initial response
for the same app:permission combination. Of our 37 partic-
ipants, 64% had at least one such discrepancy between the
first-use and subsequent preferences. This refutes AOFU’s
core assumption that few users will deviate from their initial
preferences, and corroborates our prior study, in which 79%
of 131 participants deviated from their initial responses [39].

Errors under AOFU could be either privacy violations or losses
of functionality. Privacy violations occur when the system
grants an app access to a protected resource, contrary to user
preferences. Loss of functionality occurs when the permission
system denies access to a protected resource, which the user
would have otherwise permitted. We consider privacy viola-
tions to be the more severe type of error, as the user is unable
to take back sensitive information once an app has acquired
it and transmitted it to a remote server. Loss of functionality,
however, is still undesirable because it might incentivize the
user to be overly permissive in the future. From our data, we
found that 66.67% of AOFU errors were privacy violations;
the remaining 33.33% were losses in functionality.

AOFU User Expectations
Errors in permission systems could arise from a variety of
reasons. Mismatched user expectations and lack of compre-
hension are two critical ones, which could hamper any permis-

sion model’s utility. User comprehension is critical because
users may make suboptimal decisions when they do not fully
understand permission prompts, hindering the ability of the
permission system to protect sensitive system resources. Users
must be able to comprehend the decision they are making and
the consequences of their choices. Recent work on AOFU has
examined the motives behind users’ decisions and how they
vary between categories of apps, as well as how people adapt
their behavior to the new model [5, 3, 2].

Our participants had an average of 5 years of experience
with Android. This indicates that most have experienced
both install-time permissions—the permission model prior
to Android 6.0—and runtime AOFU permission prompts. The
majority of participants said they noticed the shift to AOFU,
and they were aware that these prompts are a way to ask the
user for consent to share data with an app. A large minority of
participants (≈40%), however, had an inadequate understand-
ing of how AOFU works, which could substantially hinder
that permission model’s effectiveness in protecting user data.

Four of the 37 participants expressed doubts about the rationale
behind the prompts; rather than seeing permission prompts as
a way for users to regulate access to their sensitive data, these
participants viewed these prompts as a mechanism to extract
more information from them:

“When I see prompts, I feel like they want to know some-
thing about me, not that they want to protect anything.”
(P21)

A third (31.4%) of our participants were not aware that re-
sponding to an AOFU prompt results in a blanket approval (or
denial) that carries forward to all the app’s future uses of the
requested resource. Most participants believed that responses
were only valid for a certain amount of time, such as just for
that session or just that single request. This misconception
significantly hinders AOFU’s ability to correctly predict the
user’s preferences. Again, this observation raises the question
of whether users would respond differently if they had a more
accurate understanding of how AOFU works:

“[I] didn’t know that granting a permission carries for-
ward in the future until otherwise changed. [I] expected
permissions to be for just that one use.” (P25)

It is clear that granting blanket approval to sensitive resources
is not what users expect. On the other hand, had our partici-
pants been asked for their input on every permission request,
they would have received a prompt every 4 seconds. How,
then, can we best protect users’ privacy preferences to future
scenarios without overwhelming them with prompts?

Classifier Accuracy
During the week-long study period, each participant was sub-
ject to two operational phases of the contextual permission sys-
tem: (a) the initial learning phase, where participant responses
to prompts were used to re-train the SVM classifier according
to each individual’s preferences, and (b) the steady-state vali-
dation phase, where responses to prompts were collected to
measure the accuracy of the classifier’s decisions.

As previously discussed in our section on bootstrapping, we
use weighted reservoir sampling during the learning phase
to prioritize prompting for the most commonly observed in-
stances of app:permission:visibility combinations. During the
validation phase, participants received the same prompts, trig-
gered by random combinations of features. This ensured that
we collected validation results both for previously-encountered
and new combinations. We placed a maximum limit of 3
prompts per combination in order to further improve prompt
diversity and coverage. After presenting participants with
prompts, the instrumentation recorded the response and the
corresponding decision produced by the classifier. Using par-
ticipant responses to prompts as ground truth, we measured
the classifier’s accuracy during the validation phase. From our
sample of 37 participants, we had to exclude 6 of them due
to a cache coherency bug that was discovered after the pilot,
which degraded classifier performance. For the remainder of
this section, our results are drawn from the remaining sample
of 31, unless otherwise noted.

These 31 participants responded to 640 total prompts in the
validation phase. Our contextual permission model produced
a median accuracy of 90.24%, compared to 80.00% under
AOFU for the same population. The classifier reduced AOFU’s
error rate by 50%, with the majority of classifier errors con-
sisting of privacy violations (i.e., incorrectly granting access).

Offline Learning
We were curious whether the accuracy of our system could
be improved through the use of offline learning, which would
require much more computing power. Using participant re-
sponses to permission prompts, we analyzed how an offline
SVM classifier would perform. We implemented the SVM
model using the KSVM module in R. We performed this analy-
sis on data from all 37 participants, using leave-one-out cross-
validation to evaluate how the offline classifier would perform
for each participant.

The offline model had a median accuracy of 94.74% across
the 37 participants. By comparison, AOFU had a 80% accu-
racy for the same population. This represents a 75% error
reduction in the offline contextual model compared to AOFU.
These numbers corroborate prior findings [39]. We stress the
significance of this corroboration, because the results hold in
the presence of actual resource denial, which was not the case
for the prior study. This suggests that users will continue to
indicate their true preferences in response to prompts, even
when those preferences are enforced, potentially resulting in
unanticipated app behavior.

We note the accuracy difference between the SVM classi-
fier we integrated into Android and the R model (90.24%
vs. 94.74%, respectively). This is due to how the Android
SVM implementation performs the bootstrapping. This issue
is not inherent to integrating an SVM classifier into Android.
An updated implementation has the potential to reach the max-
imum accuracy observed in the offline model.

We calculated F-score for the two classes: “allow” and “deny.”
Under the “allow” class, the calculated F-Scores were 0.73
for AOFU, 0.83 for on-device ML, and 0.89 for offline ML.

Under the “deny” class, the F-scores were 0.45, 0.50 and 0.51,
respectively. The contextual cues has helped the ML model to
outperform AOFU in both predicting when to share the data
and when to deny the data.

Decision Confidence
We previously proposed using decision confidence to deter-
mine for which app:permission:visibility combinations users
should be prompted in the validation phase [39]. The rate of
decision confidence is also a measure of the extent to which
the classifier has correctly learned the user’s preferences. We
suggested that if this rate does not decrease over time, then
AOFU will likely be a better system for those users.

In addition to the prediction, our classifier also produced a
class probability, which we used as the measure of decision
confidence. The classifier produced a binary result (i.e., allow
or deny) with a cutoff point of 0.5. A decision probability
close to the cutoff point is a less confident result than one far
from it. We used the 95% confidence interval as a threshold
for determining low-confidence decisions.

Only four of our field study participants experienced low-
confidence classifier decisions that caused a prompt to appear
after the bootstrapping period. Each of these participants had
just one such low-confidence prompt appear. These prompts
retrained the classifier, so the lack of any subsequent low-
confidence prompts indicates that the classifier produced high-
confidence predictions for the same app:permission:visibility
combination in future cases.

The lack of additional training prompts also suggests that users
are less likely to become habituated to prompting. The four
participants who each received one additional prompt saw
a total of 13 prompts (including the 12 prompts during the
training phase). The remaining 27 participants saw just the
12 training phase prompts. Had our participants been subject
to AOFU instead of our contextual permission system, they
would have received a median of 15 prompts each, with a
quarter of the participants receiving more than 17. Instead,
we achieved a 75% error reduction (80.00% vs. 94.74%) and
reduced user involvement by 20% (12 prompts vs. 15) through
the use of classifier-driven permissions, compared to AOFU.

Impact on App Functionality
Prior work found that many apps do not properly handle cases
where they are denied access to protected resources [10]. One
core objective of our work was to measure how apps responded
to a stricter permission model than AOFU. For example,
the system will be unusable if it causes erratic app behavior,
through the use of dynamically granted permissions.

In the field study, our platform instrumentation recorded
each app crash and its corresponding exception message.
This information allowed us to identify the possible root
cause of the crash and whether it was related to resource
denial. We observed 18 different exceptions classes, such
as SecurityException, RuntimeException, and
NullPointerException. For the remainder of this
section, we will only discuss the SecurityException
class, as it is directly related to resource denials. Nearly
all (98.96%) of the recorded SecurityExceptions were

observed on the devices of just two participants. Each
of the remaining participants encountered, on average,
18 SecurityExceptions during the study period (i.e.,
roughly 3 SecurityExceptions per day per participant).

Almost all (99.93%) SecurityExceptions were caused
when apps attempted to read subscriber information (i.e., the
READ_PHONE_STATE permission, used to obtain the phone
number). In the event of a READ_PHONE_STATE denial, our
implementation did not supply the app with any phone number
data. As discussed earlier, we do not supply a randomly-
generated phone number to avoid collateral privacy violations.

For other denials, we opted to supply apps with generated data
to ensure their continued operation, without actually exposing
private user data. During the study period, the classifier denied
10.34% of all permission requests; more than 2,000 denials
per participant per day. Our implementation, however, only
recorded an average of 3 SecurityExceptions per day
per participant. This indicates that passing synthetic but well-
formed data to apps in lieu of actual private user data does
satisfy app functionality expectations to a great extent.

Our results are a positive sign for future permission systems
more restrictive than the current AOFU model: permissions
can be more restrictive without forcing the user to trade off
usability for improved privacy protection, as we will show in
the next section. If apps gracefully handle resource denials,
then users are free to specify their privacy preferences without
risking functionality losses.

User Reactions to Prompts
We measured how much participants were surprised to see
the prompts during the course of the study period (on a scale
of 1=“not surprised” to 5=“very surprised”). Participants ex-
pressed an average rating of 2.7. Almost half (44%) of the
participants indicated that the prompts surprised them, and
among them, 70% were surprised at the frequency with which
the prompts appeared (up to 4 times per day), though few
participants expressed annoyance by that frequency (8%).

We asked participants to rate how much they felt that they
were in control of resource usage (on a scale of 1=“nothing
changed compared to default Android” to 5=“very much in
control”). On average, our participants rated their experience
as 3.44. Almost half (44%) felt that they were in control of
the system as a result of the prompts. A small number (14%)
still felt helpless, regardless of their responses to the prompts.
They felt resigned that apps would always obtain their data.

Finally, we asked how they felt about the transparency pro-
vided by the new system (on a scale of 1=“nothing changed”
to 5=“improved system transparency”). On average, partici-
pants rated system transparency in the middle (3). Almost half
(47%) of them felt that the new system was more transparent.
A minority (14%) mentioned wanting to know why apps were
requesting particular sensitive data types.

From these observations, we believe that our contextual per-
mission system is a positive step toward improving user aware-
ness, enabling users to make more informed privacy decisions.

User Reactions to Controls
Whenever an automated system makes decisions on a user’s
behalf, there is the inevitable risk that the system will make an
incorrect decision. In our case this can cause apps to be over-
privileged and risk privacy violations, or be under-privileged
and risk app failure or reduced functionality. It is important
to empower users so they can easily audit the decisions that
were made on their behalf and to amend those decisions that
are not aligned with their preferences.

We built a user interface based on our prior work [36], which
allowed our participants to view automated permissions deci-
sions made by the classifier, as well as set privacy preferences
with respect to context (i.e., the visibility of the requesting
app). We included this user interface as part of the operating
system, as a panel within the system settings app.

When we on-boarded our participants, we mentioned to them
that there was a new “permission manager” available, but to
avoid priming them, we made sure not to emphasize it in
any particular way. Our instrumented platform logged every
time participants interacted with our permission manager to
understand how they used it.

Fifteen of the 37 participants (40.5%) opened the permission
manager during the study period. Our implementation logged
a total of 169 preference changes across these participants.
Only 6 out of 37 participants (16.2%) changed the settings to
be more restrictive. Of the adjustments made towards more
restrictiveness, the majority were for the GET_ACCOUNTS per-
mission, which prevents apps from reading the user’s stored
credentials (e.g., usernames linked to accounts on the device,
such as for Google, Twitter, etc.). In contrast, the most-
common permission that participants adjusted to be more per-
missive was READ_CONTACTS. When asked for their motives
behind these changes, the majority of participants said that
functionality was their main reason for granting more access,
and the sensitivity of data for restricting access.

We also asked participants to demonstrate how they would
change the settings of a familiar app to only be able to access
their location when they are using that app. We based this
task off of one of our previous tasks used to evaluate the low-
fidelity prototype of the interface [36]. Using the functional
interface, all but two of our participants were able to correctly
complete this task. Participants rated the average ease of
the task as 1.15 (on a scale from 1=“very easy” to 5=“very
hard”). We conclude that participants are able to understand
the permission interface after having used it for a week and
without special instructions.

The permission manager also enables users to diagnose app
crashes that result from resource denial (a feature not present
in the low-fidelity prototype). In exit interviews, we examined
how participants responded to app crashes in their experiences
with the device. The majority of participants reported that
their first step was to restart the app that had crashed. If
unsuccessful, they would then restart their phone. This informs
the design of a future system: if an app crashes as a result of a
resource denial, the platform could clearly communicate this
to users through a dialog or the notification bar.

DISCUSSION
The core objective of our 37-person field study was to analyze
how a contextually-aware, more-restrictive permission model
performs in the wild. We examined how participants balanced
their privacy preferences with app functionality. This mea-
sures the real-world applicability of predicting user privacy
decisions with the help of contextual cues surrounding each
permission request.

Consequential Denial
Overall, participants denied 24% of all prompted permission
requests. This is a 60% reduction in denials compared to our
prior results [39], which framed the question using only hypo-
thetical language (i.e., permissions were not actually denied
to apps): “given the choice, would you have denied...?” The
decreased denial rate we observed is therefore unsurprising
given that participants were now potentially making a tradeoff
between functionality and privacy, instead of expressing the
degree to which privacy is important to them. Our results
show that even in the presence of consequential resource de-
nial, contextual cues helped to predict users’ privacy decisions
and better aligned permission settings with their expectations,
as compared to the status quo.

Ask on First Use
Our results corroborate our previous findings: AOFU’s inabil-
ity to capture the context surrounding users’ decisions is a
significant cause of privacy violations [38, 39]. We also found
that a significant portion of participants do not have an ade-
quate understanding of how AOFU works, which further limits
its utility: 11 participants did not realize that their prompt re-
sponses remained in effect in perpetuity, and 4 participants be-
lieved that the prompts were in furtherance of privacy-invasive
activities. While the actual impact of these inaccurate beliefs
is yet to be explored, we believe that these issues need to be
addressed in the future, in order to increase Android’s ability
to support user privacy preferences and protect user data.

Experimental Caveats
Our experiments involved participants using their existing apps
on fresh devices, meaning that their existing AOFU prefer-
ences were not carried over. This means that were they to use
a stock Android device they would be bombarded with AOFU
prompts at the beginning of the experience. In contrast, our
system, to avoid habituation to our prompts, we rate limited
the number of prompts to four prompts per day.

One caveat of this approach is if participants hit this prompt-
ing limit then they would not see a prompt for a new
app:permission combination, though they would see such
a prompt later when the rate limit is not in effect. It is pos-
sible that our simulated AOFU prompts may have appeared,
in some cases, under different circumstances than if they had
simply been using the AOFU model. However, our prior work
showed that the circumstances surrounding the initial prompt
have limited effect on the overall efficacy of the AOFU sys-
tem [39].

In a real-world deployment, we envision prompting to be
sporadic, primarily occurring when a new app is installed. The
post-study interviews, however, did not show that the current

rate created user fatigue. In the exit interviews, only 3 of
the 37 participants mentioned that the prompts annoyed them.
Although 70% of the participants were indeed surprised due
to the frequency of the prompts, that surprise did not pose
a burden, but rather made them think more about access to
sensitive data. Our accuracy rate corroborates our prior work
[39], in which participants were prompted only once per day
over a longer study period (compared to our study’s rate of
4 prompts/day). For example, in our study, AOFU had an
accuracy of 80%, while the prior study had an accuracy rate of
84% [39]. Consequently, we do not believe that the relatively
shorter study period and higher prompting rate appreciably
impacted the results.

SVM Implementation Limitations
While our new permission model reduces the number of mis-
predictions compared to AOFU by 50%, our offline analysis
shows that it has the potential to reduce mis-predictions by
75%. A further examination revealed that the performance
difference is due to the bootstrapping of the training dataset
in the implementation. We note that difference is not inherent
to running a classifier on Android, and so simply modifying
our implementation to use these improvements will allow it to
achieve the same performance.

Purpose
While our new permission model outperforms AOFU, it still
does not explain to the user why an app needs to use a permis-
sion. In our exit interviews, we observed that 14% of partici-
pants expressed the desire to know why apps made a request
in the first place. Previous work has shown that app func-
tionality is a key factor in permission decisions [5]. If users
were properly informed of the functionality requirement be-
hind a permission request, then they might be better positioned
to make decisions that meet their privacy and functionality
expectations.

We believe that there are ways to extend contextual permission
systems by incorporating the actual purpose of the request.
For example, after introducing AOFU permissions, Android
started encouraging app developers to provide the reason be-
hind their permission requests so that the user can include that
in the decision-making process [7]. Tan et al. [34] showed
that similar prompts on iOS actually resulted in users being
more permissive about granting permissions to apps. Similarly,
prior work has attempted to use static analysis to automatically
incorporate inferred purpose [24, 23].

Resource Denial
When deploying more-restrictive permission systems, it is
important that apps continue to run without entering into an
error state that results from a resource denial. Users should
be able to select their privacy preferences with minimal dis-
ruption to their experience; apps must not be able to force
an ultimatum by simply not functioning if a permission is de-
nied. Indeed, some participants simply allow most permission
requests because that ensures their apps run properly.

The platform, therefore, is responsible for ensuring that apps
handle resource denials gracefully. To their credit, when An-
droid introduced AOFU, it implemented some permission de-

nials to appear like a lack of available data or the non-existence
of hardware, instead of throwing a SecurityException.
In our implementation, we take the extra step of supplying
apps with generic but well-formed data in the event of a de-
nial. We observed that our participants tended to deny more
permissions as they progressed through the study period: 20%
of permissions were denied in the learning phase, compared
to 26% during the validation phase. Those participants also
experienced a low rate of app failures due to resource denials.
Future research is needed to develop more measures to re-
duce functionality losses stemming from enforcing stricter
privacy preferences. Failing to do so might otherwise compel
users to compromise their privacy preferences for the sake of
functionality.

Remedying Unexpected Behavior
Regardless of any mitigations to avoid app crashes, it is prac-
tical to assume that apps will crash when they fail to receive
expected data under certain circumstances. One way to rem-
edy this is to give users tools to adjust the behavior of the
permission system, such as being able to be more permissive
to certain apps in certain contexts. This approach, however,
assumes that (i) users accurately attribute a crash event to a
resource denial, which may not always be the case, and (ii)
users are able identify which resource denial caused the crash.
In our implementation of a new permission manager, we ad-
dressed the latter assumption by providing users a timeline of
recent decisions made by the new permission system, which
can be used to deduce the cause of a crash.

Our exit interviews showed that few participants thought to
check the permission manager following an app crash, so
clearly more work is needed here. With proposals for more ac-
curate and more restrictive permission models, it is necessary
to have usable mechanisms to deal with inevitable crashes due
to resource denials. The platform should provide mechanisms
either to help the user diagnose and resolve such crashes, or to
automatically fix permissions on a temporary basis and give
the user an option to make the fix permanent.

Conclusion
This study showed how apps and users respond to a real-world
deployment of a novel contextually-aware permission model.
The new permission system significantly reduced the error rate
from that of the prevailing “ask-on-first-use” model first de-
ployed in Android 6.0. While prior work already demonstrated
ways to increase the protection provided by new permission
models, we believe our study provides opportunities to fur-
ther improve performance and address practical limitations in
actual implementations.

ACKNOWLEDGMENTS
This work was supported by the U.S. National Science Foun-
dation (NSF) under grant CNS-1318680, the U.S. Department
of Homeland Security (DHS) under contract FA8750-16-C-
0140, and the Center for Long-Term Cybersecurity (CLTC) at
U.C. Berkeley. We would additionally like to thank our study
participants and Refjohürs Lykkewe.

REFERENCES
1. Hussain M.J. Almohri, Danfeng (Daphne) Yao, and

Dennis Kafura. 2014. DroidBarrier: Know What is
Executing on Your Android. In Proc. of the 4th ACM
Conf. on Data and Application Security and Privacy
(CODASPY ’14). ACM, New York, NY, USA, 257–264.
DOI:http://dx.doi.org/10.1145/2557547.2557571

2. Panagiotis Andriotis, Shancang Li, Theodoros
Spyridopoulos, and Gianluca Stringhini. 2017. A
Comparative Study of Android Users’ Privacy
Preferences Under the Runtime Permission Model.
Springer International Publishing, Cham, 604–622. DOI:
http://dx.doi.org/10.1007/978-3-319-58460-7_42

3. P. Andriotis, M. A. Sasse, and G. Stringhini. 2016.
Permissions snapshots: Assessing users’ adaptation to the
Android runtime permission model. In 2016 IEEE
International Workshop on Information Forensics and
Security (WIFS). 1–6. DOI:
http://dx.doi.org/10.1109/WIFS.2016.7823922

4. Adam Barth, Anupam Datta, John C. Mitchell, and Helen
Nissenbaum. 2006. Privacy and Contextual Integrity:
Framework and Applications. In Proc. of the 2006 IEEE
Symposium on Security and Privacy (SP ’06). IEEE
Computer Society, Washington, DC, USA, 15. DOI:
http://dx.doi.org/10.1109/SP.2006.32

5. Bram Bonné, Sai Teja Peddinti, Igor Bilogrevic, and Nina
Taft. 2017. Exploring decision making with Android’s
runtime permission dialogs using in-context surveys. In
Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017). USENIX Association, Santa Clara, CA,
195–210. https://www.usenix.org/conference/
soups2017/technical-sessions/presentation/bonne

6. Chih-Chung Chang and Chih-Jen Lin. LIBSVM – A
Library for Support Vector Machines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. (????).
Accessed: September 11, 2017.

7. Google Developer. Requesting Permissions at Run Time.
https://developer.android.com/training/
permissions/requesting.html. (????). Accessed:
September 16, 2017.

8. Serge Egelman, Adrienne Porter Felt, and David Wagner.
2012. Choice Architecture and Smartphone Privacy:
There’s A Price for That. In The 2012 Workshop on the
Economics of Information Security (WEIS).

9. William Enck, Peter Gilbert, Byung-Gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N.
Sheth. 2010. TaintDroid: an information-flow tracking
system for realtime privacy monitoring on smartphones.
In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation
(OSDI’10). USENIX Association, Berkeley, CA, USA,
1–6. http:
//dl.acm.org/citation.cfm?id=1924943.1924971

10. Zeran Fang, Weili Han, Dong Li, Zeqing Guo, Danhao
Guo, Xiaoyang Sean Wang, Zhiyun Qian, and Hao Chen.

2016. revDroid: Code Analysis of the Side Effects after
Dynamic Permission Revocation of Android Apps. In
Proceedings of the 11th ACM Asia Conference on
Computer and Communications Security (ASIACCS
2016). ACM, Xi’an, China.

11. Adrienne Porter Felt, Serge Egelman, Matthew Finifter,
Devdatta Akhawe, and David Wagner. 2012b. How to ask
for permission. In Proc. of the 7th USENIX conference on
Hot Topics in Security. USENIX Association, Berkeley,
CA, USA, 1. http:
//dl.acm.org/citation.cfm?id=2372387.2372394

12. Adrienne Porter Felt, Serge Egelman, and David Wagner.
2012a. I’ve got 99 problems, but vibration ain’t one: a
survey of smartphone users’ concerns. In Proc. of the 2nd
ACM workshop on Security and Privacy in Smartphones
and Mobile devices (SPSM ’12). ACM, New York, NY,
USA, 33–44. DOI:
http://dx.doi.org/10.1145/2381934.2381943

13. Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel
Haney, Erika Chin, and David Wagner. 2012c. Android
permissions: user attention, comprehension, and behavior.
In Proc. of the Eighth Symposium on Usable Privacy and
Security (SOUPS ’12). ACM, New York, NY, USA,
Article 3, 14 pages. DOI:
http://dx.doi.org/10.1145/2335356.2335360

14. Clint Gibler, Jonathan Crussell, Jeremy Erickson, and
Hao Chen. 2012. AndroidLeaks: Automatically
Detecting Potential Privacy Leaks in Android
Applications on a Large Scale. In Proc. of the 5th Intl.
Conf. on Trust and Trustworthy Computing (TRUST’12).
Springer-Verlag, Berlin, Heidelberg, 291–307. DOI:
http://dx.doi.org/10.1007/978-3-642-30921-2_17

15. Google. Dangerous Permissions.
https://developer.android.com/guide/topics/
permissions/requesting.html#normal-dangerous.
(????). Accessed: August 17, 2017.

16. Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and
Andreas Zeller. 2014. Checking App Behavior Against
App Descriptions. In Proceedings of the 36th
International Conference on Software Engineering (ICSE
2014). ACM, New York, NY, USA, 1025–1035. DOI:
http://dx.doi.org/10.1145/2568225.2568276

17. Stefan E Hormuth. 1986. The sampling of experiences in
situ. Journal of personality 54, 1 (1986), 262–293.

18. Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall. 2011. These aren’t the
droids you’re looking for: retrofitting android to protect
data from imperious applications. In Proc. of the ACM
Conf. on Comp. and Comm. Sec. (CCS ’11). ACM, New
York, NY, USA, 639–652. DOI:
http://dx.doi.org/10.1145/2046707.2046780

19. Jaeyeon Jung, Seungyeop Han, and David Wetherall.
2012. Short Paper: Enhancing Mobile Application
Permissions with Runtime Feedback and Constraints. In
Proceedings of the Second ACM Workshop on Security

http://dx.doi.org/10.1145/2557547.2557571
http://dx.doi.org/10.1007/978-3-319-58460-7_42
http://dx.doi.org/10.1109/WIFS.2016.7823922
http://dx.doi.org/10.1109/SP.2006.32
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/bonne
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/bonne
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=2372387.2372394
http://dl.acm.org/citation.cfm?id=2372387.2372394
http://dx.doi.org/10.1145/2381934.2381943
http://dx.doi.org/10.1145/2335356.2335360
http://dx.doi.org/10.1007/978-3-642-30921-2_17
https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
http://dx.doi.org/10.1145/2568225.2568276
http://dx.doi.org/10.1145/2046707.2046780

and Privacy in Smartphones and Mobile Devices (SPSM
’12). ACM, New York, NY, USA, 45–50. DOI:
http://dx.doi.org/10.1145/2381934.2381944

20. Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith
Cranor, Jaeyeon Jung, Norman Sadeh, and David
Wetherall. 2012. A Conundrum of Permissions: Installing
Applications on an Android Smartphone. In Proc. of the
16th Intl. Conf. on Financial Cryptography and Data Sec.
(FC’12). Springer-Verlag, Berlin, Heidelberg, 68–79.
DOI:
http://dx.doi.org/10.1007/978-3-642-34638-5_6

21. William Klieber, Lori Flynn, Amar Bhosale, Limin Jia,
and Lujo Bauer. 2014. Android Taint Flow Analysis for
App Sets. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java
Program Analysis (SOAP ’14). New York, NY, USA, 6.
DOI:http://dx.doi.org/10.1145/2614628.2614633

22. Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong.
2014. Modeling Users’ Mobile App Privacy Preferences:
Restoring Usability in a Sea of Permission Settings. In
Symposium On Usable Privacy and Security (SOUPS
2014). USENIX Association, Menlo Park, CA, 199–212.

23. Jialiu Lin, Norman Sadeh, Shahriyar Amini, Janne
Lindqvist, Jason I. Hong, and Joy Zhang. 2012.
Expectation and purpose: understanding users’ mental
models of mobile app privacy through crowdsourcing. In
Proc. of the 2012 ACM Conf. on Ubiquitous Computing
(UbiComp ’12). ACM, New York, NY, USA, 501–510.
DOI:http://dx.doi.org/10.1145/2370216.2370290

24. Bin Liu, Mads Schaarup Andersen, Florian Schaub,
Hazim Almuhimedi, Shikun Aerin Zhang, Norman
Sadeh, Yuvraj Agarwal, and Alessandro Acquisti. 2016.
Follow My Recommendations: A Personalized Assistant
for Mobile App Permissions. In Twelfth Symposium on
Usable Privacy and Security (SOUPS 2016).

25. Bin Liu, Jialiu Lin, and Norman Sadeh. 2014.
Reconciling Mobile App Privacy and Usability on
Smartphones: Could User Privacy Profiles Help?. In
Proceedings of the 23rd International Conference on
World Wide Web (WWW ’14). ACM, New York, NY,
USA, 201–212. DOI:
http://dx.doi.org/10.1145/2566486.2568035

26. Kristopher Micinski, Daniel Votipka, Rock Stevens,
Nikolaos Kofinas, Jeffrey S. Foster, and Michelle L.
Mazurek. 2017. User Interactions and Permission Use on
Android. In CHI 2017.

27. Helen Nissenbaum. 2004. Privacy as contextual integrity.
Washington Law Review 79 (February 2004), 119.

28. Helen Nissenbaum. 2009. Privacy in context: Technology,
policy, and the integrity of social life. Stanford University
Press.

29. Katarzyna Olejnik, Italo Ivan Dacosta Petrocelli,
Joana Catarina Soares Machado, Kévin Huguenin,
Mohammad Emtiyaz Khan, and Jean-Pierre Hubaux.

2017. SmarPer: Context-Aware and Automatic
Runtime-Permissions for Mobile Devices. In Proceedings
of the 38th IEEE Symposium on Security and Privacy
(SP). IEEE.

30. Talia Ringer, Dan Grossman, and Franziska Roesner.
2016. AUDACIOUS: User-Driven Access Control with
Unmodified Operating Systems. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 204–216.

31. Franziska Roesner and Tadayoshi Kohno. 2013. Securing
embedded user interfaces: Android and beyond. In
Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13). 97–112.

32. Jialiu Lin Bin Liu Norman Sadeh and Jason I Hong. 2014.
Modeling users’ mobile app privacy preferences:
Restoring usability in a sea of permission settings. In
Symposium on Usable Privacy and Security (SOUPS).

33. Bilal Shebaro, Oyindamola Oluwatimi, Daniele Midi, and
Elisa Bertino. 2014. IdentiDroid: Android Can Finally
Wear Its Anonymous Suit. Trans. Data Privacy 7, 1
(April 2014), 27–50. http:
//dl.acm.org/citation.cfm?id=2612163.2612165

34. Joshua Tan, Khanh Nguyen, Michael Theodorides, Heidi
Negron-Arroyo, Christopher Thompson, Serge Egelman,
and David Wagner. 2014. The Effect of
Developer-Specified Explanations for Permission
Requests on Smartphone User Behavior. In Proc. of the
SIGCHI Conf. on Human Factors in Computing Systems.

35. Christopher Thompson, Maritza Johnson, Serge Egelman,
David Wagner, and Jennifer King. 2013. When It’s Better
to Ask Forgiveness than Get Permission: Designing
Usable Audit Mechanisms for Mobile Permissions. In
Proc. of the 2013 Symposium on Usable Privacy and
Security (SOUPS).

36. Lynn Tsai, Primal Wijesekera, Joel Reardon, Irwin Reyes,
Serge Egelman, David Wagner, Nathan Good, and
Jung-Wei Chen. 2017. Turtle Guard: Helping Android
Users Apply Contextual Privacy Preferences. In
Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017). USENIX Association, Santa Clara, CA,
145–162.

37. Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and
Michalis Faloutsos. 2012. Permission Evolution in the
Android Ecosystem. In Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC ’12).
ACM, New York, NY, USA, 31–40. DOI:
http://dx.doi.org/10.1145/2420950.2420956

38. Primal Wijesekera, Arjun Baokar, Ashkan Hosseini,
Serge Egelman, David Wagner, and Konstantin Beznosov.
2015. Android Permissions Remystified: A Field Study
on Contextual Integrity. In 24th USENIX Security
Symposium (USENIX Security 15). USENIX Association,
Washington, D.C., 499–514.

39. P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S.
Egelman, D. Wagner, and K. Beznosov. 2017. The

http://dx.doi.org/10.1145/2381934.2381944
http://dx.doi.org/10.1007/978-3-642-34638-5_6
http://dx.doi.org/10.1145/2614628.2614633
http://dx.doi.org/10.1145/2370216.2370290
http://dx.doi.org/10.1145/2566486.2568035
http://dl.acm.org/citation.cfm?id=2612163.2612165
http://dl.acm.org/citation.cfm?id=2612163.2612165
http://dx.doi.org/10.1145/2420950.2420956

Feasibility of Dynamically Granted Permissions:
Aligning Mobile Privacy with User Preferences. In 2017
IEEE Symposium on Security and Privacy (SP).
1077–1093. DOI:
http://dx.doi.org/10.1109/SP.2017.51

40. Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen.
2014. Mobile App Recommendations with Security and
Privacy Awareness. In Proc. of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining. ACM, New York, NY, USA, 10. DOI:
http://dx.doi.org/10.1145/2623330.2623705

http://dx.doi.org/10.1109/SP.2017.51
http://dx.doi.org/10.1145/2623330.2623705

	Introduction
	Related Work
	Implementation
	A Local Classifier
	Bootstrapping
	Feature Set

	Sensitive Resources
	Permission Denial
	Contextually Aware Permission Manager

	Validation Methodology
	Participant Privacy Preferences
	Recruitment
	Exit Interview

	Results
	Status Quo Problems
	AOFU User Expectations

	Classifier Accuracy
	Offline Learning
	Decision Confidence

	Impact on App Functionality
	User Reactions to Prompts
	User Reactions to Controls

	Discussion
	Consequential Denial
	Ask on First Use
	Experimental Caveats
	SVM Implementation Limitations
	Purpose
	Resource Denial
	Remedying Unexpected Behavior
	Conclusion

	Acknowledgments
	References

