
The Medium is the Message: How Secure Messaging Apps Leak
Sensitive Data to Push Notification Services

Nikita Samarin,
1,2

Alex Sanchez,
1
Trinity Chung,

1
Akshay Dan Bhavish Juleemun,

1
Conor

Gilsenan,
1
Nick Merrill,

1
Joel Reardon,

3
and Serge Egelman

1,2

{nsamarin,alexso,trinityc,adbjuleemun,conorgilsenan,ffff,egelman}@berkeley.edu

joel.reardon@ucalgary.ca
1
University of California, Berkeley;

2
International Computer Science Institute (ICSI);

3
University of Calgary

ABSTRACT
Like most modern software, secure messaging apps rely on third-

party components to implement important app functionality. Al-

though this practice reduces engineering costs, it also introduces

the risk of inadvertent privacy breaches due to misconfiguration

errors or incomplete documentation. Our research investigated se-

cure messaging apps’ usage of Google’s Firebase Cloud Messaging

(FCM) service to send push notifications to Android devices. We

analyzed 21 popular secure messaging apps from the Google Play

Store to determine what personal information these apps leak in

the payload of push notifications sent via FCM. Of these apps, 11

leaked metadata, including user identifiers (10 apps), sender or re-

cipient names (7 apps), and phone numbers (2 apps), while 4 apps

leaked the actual message content. Furthermore, none of the data

we observed being leaked to FCMwas specifically disclosed in those

apps’ privacy disclosures. We also found several apps employing

strategies to mitigate this privacy leakage to FCM, with varying

levels of success. Of the strategies we identified, none appeared to

be common, shared, or well-supported. We argue that this is fun-

damentally an economics problem: incentives need to be correctly

aligned to motivate platforms and SDK providers to make their

systems secure and private by default.

KEYWORDS
privacy, security, mobile, push notifications, FCM

1 INTRODUCTION
“She speaks, yet she says nothing.”

—William Shakespeare, Romeo and Juliet

Modern economies rely on the specialization of labor [74]. Soft-

ware engineering is no different: modern software relies on myriad

third-party components to fulfill tasks so that developers do not

need to waste time rebuilding specific functions from scratch [28].

This type of “code reuse” is a recommended practice and transcends

many branches of engineering (e.g., car manufacturers do not manu-

facture every component that goes into their cars, instead relying on

components from third-party suppliers). Software development kits

(SDKs) facilitate code reuse during software development and offer

many benefits for developers. They provide well-trodden paths:

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies YYYY(X), 1–16
© YYYY Copyright held by the owner/author(s).

https://doi.org/XXXXXXX.XXXXXXX

Figure 1: An illustration of an Android push notification.

documented workflows for developers to follow so that these devel-

opers can consistently provide common functionality. Ultimately,

SDKs reduce engineering costs when used responsibly.

Yet, recent research has demonstrated that many software pri-

vacy issues (i.e., the inappropriate disclosure of sensitive user infor-

mation) are due to developers’ misuse of third-party services [4, 65].

That is, privacy breaches often occur due to developers not cor-

rectly configuring SDKs, not reading SDK documentation, or SDKs

behaving in undocumented ways, often unbeknownst to develop-

ers. This is especially concerning when the third-party SDK may

transmit highly sensitive user data to third parties and the SDK is

ubiquitous across many software supply chains.

Heightened public concerns around the monitoring of online

communications have significantly influenced consumer behavior

in the past decade. A 2014 PEW survey found that 70% of Ameri-

cans are concerned about government surveillance and 80% about

surveillance by corporations [53]. In response to these concerns,

more and more consumers have begun using secure messaging apps

to protect their communications based on the promises of privacy

made by these apps. Hundreds of millions of users now use apps

like Signal or Telegram, believing these apps to protect their privacy.

These applications are entrusted with a vast array of confidential

user data, from personal conversations to potentially-sensitive mul-

timedia content, thereby placing a significant emphasis on their

ability to make good on their promises of privacy and security.

1

https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

Proceedings on Privacy Enhancing Technologies YYYY(X) N. Samarin et al.

The misuse of third-party SDKs within secure messaging apps

may pose a heightened risk to users because those SDKs may leak

sensitive information to third parties. In particular, app developers

use third-party SDKs to implement push notifications, which display
important information to the user, including messages from other

app users (Figure 1). Because push notification SDKs are generally

provided by third parties (as opposed to app developers), incorrect

usage may leak sensitive information to those third parties. For ex-

ample, an app that provides “end-to-end” encrypted messaging may

not actually provide end-to-end encryption if message payloads

are not encrypted before being sent to third-party push notifica-

tion APIs. To make matters worse, misuse of these SDKs may also

contribute to the misrepresentation of security and privacy assur-

ances to consumers as articulated in various disclosures, including

privacy policies, terms of service, and marketing materials.

The combined risk of sensitive information leakage and misrep-

resentation of privacy promises creates serious ramifications for

users of secure messaging platforms. Oppressive regimes or other

adversaries may use court orders to compel companies involved

in the delivery infrastructure of push notifications to reveal the

contents of communications sent and received by human-rights

workers, political dissidents, journalists, etc. Worse, when this does

happen, both the developers of the apps and the users who are

endangered are unlikely to be aware that their communications are

being intercepted. This threat model is not just theoretical. Cru-

cially, since we performed our analysis, U.S. Senator Ron Wyden

published an open letter that confirms that government agencies

do, in fact, collect user information by demanding push notification

records from Google and other push notification providers through

the use of legal processes [100]. Our work is highly prescient, as it

provides new insights into an emergent threat model.

To study the extent to which the delivery infrastructure may

access sensitive user information, we examined the use of Google’s

Firebase Cloud Messaging (FCM) to deliver push notifications to

secure messaging apps on Android devices. Google provides FCM

as a free service, and therefore, it is one of the most commonly

used third-party SDKs to deliver Android push notifications. More-

over, the majority of other push services, including OneSignal [58],

Pusher [63], and AirShip [3] internally rely on Google’s FCM to

deliver notifications to Android devices, making the usage of FCM

practically unavoidable for developers who wish to provide push

notification support in their Android apps. (On Apple’s iOS, third-

party push notification APIs are similarly built on top of Apple’s

push notification service [59].) We focus on secure messaging apps

because these apps (1) market their abilities to keep message data

“private” or “secure” and (2) make heavy use of push notifications

to notify users of incoming messages and their contents (and there-

fore, when not implemented correctly, may run the risk of leaking

message contents and metadata to the push notification service).

Prior work has investigated the potential security risks that push

notifications may pose, including by push notification-based mal-

ware [41, 48] and botnets [41, 47]. To our knowledge, no work

has focused on the privacy risks of push notification services used

by secure messaging apps. Therefore, we performed a study to

examine whether the push notification records potentially stored

without end-to-end encryption by the delivery infrastructure may

misrepresent or compromise the privacy protections of secure mes-

saging and expose users to legal risks. Thus, we posed the following

research questions:

• RQ1: What personal data do secure messaging apps for

Android send via Google’s Firebase Cloud Message (FCM)?

• RQ2: What mitigation strategies do app developers use

to protect personal information from being disclosed to

Google’s FCM?

• RQ3: Do the observed data-sharing behaviors align with the

privacy assurances apps make in their public disclosures?

To answer these questions, we performed static and dynamic

analysis on a corpus of 21 secure messaging apps. We used dynamic

analysis to understand what data these apps sent over the network.

When we found that apps displayed data in push notifications,

but did not obviously send that data over the network, we used

static analysis to understand what mitigation strategies they used

to achieve this effect. In contrast, when segments of data displayed

in the app were verbatim in push notifications, we further examined

these messages to assess whether sensitive data was available in

plaintext to the delivery infrastructure. Finally, we analyzed apps’

privacy policies and other disclosures to identify the privacy claims

that apps made to users. By comparing observed behavior from our

app analysis to disclosed behavior, we identify undisclosed sharing

and potentially-misleading data practices: data that apps imply that

they will not disclose, but—intentionally or not—do disclose to the

delivery infrastructure through the use of push notifications.

We found that more than half of the apps in our corpus leak some
personal information to Google via FCM. Furthermore, none of the

data we observed being leaked to FCM was specifically disclosed in

those apps’ privacy disclosures. We also found several apps employ-

ing strategies to mitigate this privacy leakage to FCM, with varying

levels of success. Of those identified strategies, none appeared to

be common, shared, or well-supported. While app developers are

ultimately responsible for the behavior of their apps, they are often

ill-equipped to evaluate their apps’ privacy and security properties

in practice. Given that the problems that we observe are pervasive

across app developers and stem from the use of third-party com-

ponents that can be easily used insecurely, we conclude that SDK

providers are best positioned to fix these types of issues through

both better guidance and privacy-preserving designs and defaults.

In this paper, we contribute the following:

• We demonstrate the widespread sharing of personal informa-

tion, perhaps inadvertently, with Google through developers’

use of push notifications.

• We highlight systemic mismatches between privacy disclo-

sures and observed behaviors in delivering push notifications

via FCM.

• We discuss developers’ negligence in deploying software

that they do not understand and the responsibility that SDK

and platform providers share in creating infrastructures that

are private/secure by default.

2 BACKGROUND
We provide an overview of push notification services (PNS), specif-

ically Google’s Firebase Cloud Messaging (FCM). We describe the

threat model we consider in this paper and our overall motivation.

2

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies YYYY(X)

Figure 2: Flow chart of FCM’s push notification infrastructure
for messaging apps, highlighting the actors involved and the
interactions between them: an event occurs that triggers a
push notification, e.g., a message from a sender (1) prompts
the app server to create and send the message to FCM (2),
which then forwards it to the recipient’s Android device (3).
If needed, the receiving app running on that device may also
query additional information from the app server (4).

2.1 Mobile Push Notifications
A push notification is a short message that appears as a pop-up on

the desktop browser, mobile lock screen, or in a mobile device’s

notification center (Figure 1). Push notifications are typically opt-

in
1
alerts that display text and rich media, like images or buttons,

which enable a user to take a specific action in a timely fashion, even

when the app in question is in the background. Applications often

use push notifications as a marketing or communication channel,

but they can also be used as a security mechanism (e.g., as part of a

multi-factor authentication ceremony).

There is a difference between push messages and notifications.

“Push” is the technology for sending messages from the server-side

component of the app (the “app server”) to its client side (the “client

app”), even when the user is not actively using the app. Notifications

refer to the process of displaying timely information to the user by

the app’s user interface (UI) [12]. In the context of mobile apps, the

application server can send a push message without displaying a

notification (i.e., a silent push); an app can also display a notification

based on an in-app event without receiving any push messages. For

simplicity’s sake, we use the term “push notifications” in this paper

regardless of whether an actual notification is displayed to the end

user (i.e., we refer to messages flowing through a cloud messaging

server to a user’s device, whereupon the device’s operating system

routes the messages to the appropriate app).

Although app developers could, in theory, implement their own

push notification service, this is usually impractical as it requires the

app to continually run as a background service, thereby reducing

battery life. Instead, most mobile app developers rely on operating
system push notification services (OSPNSs), including Firebase Cloud
Messaging (FCM) for Android or Apple Push Notification Service

(APNS) for iOS devices [8]. FCM and other PNSs facilitate push

1
Android and iOS require user permission before an app can display notifications.

notifications via an SDK the developer adds to their application.

When a user launches the app for the first time, the SDK registers

the device with the PNS by generating a push token (also known

as a registration token), which serves as a pseudonymous identifier

that tells the push service where to forward the messages. The SDK

returns the push token to the client app, which should then be sent

and stored in a database on the app server. When the app wants to

send a push notification, it looks up the appropriate push token and

sends it alongside the message to the PNS, which then forwards

the message to the correct device [94]. The push token is tied to

the app instance, and therefore, the developer should periodically

refresh it, e.g., if the user deletes and reinstalls the app.

In sum, there are three main actors involved in the process of

sending push notifications using FCM (see also Figure 2):

App Server sends event-specific messages to FCM (2). For in-

stance, in the context of a messaging app, a sender device

may send a message to the app server (1), which then sends

a push notification request to FCM (2).

Firebase Cloud Messaging (FCM) is a cloud-based OSPNS

that forwards push messages to the appropriate user device

using the stored registration token(3), even if the client app

is offline or in the background. It also exposes an API to the

developer to enable push messaging in their applications.

Android Device runs the OS and the client app. Android uses

a system component that is part of Google Play Services to

receive push messages sent by FCM, which it then passes to

the appropriate app. Optionally, the client app can also query

additional information from the app server (4) in response

to a received push notification.

The SDKs distributed by FCM and other PNSs not only streamline

app development by reducing the amount of code that needs to be

written, but in many cases, their use is necessary for performance

and efficiency reasons [79]. Developers would also need to request

the Android permission for unrestricted battery usage, something a

user might not necessarily grant. As such, mobile platform owners

only provide official support for their managed OSPNSs: Google

for FCM and Apple for ASPNS.
2

2.2 FCM Alternatives
Given the utility of push notifications, companies have started of-

fering push notification services that compete with Google’s FCM.

These third-party PNS providers, such as Airship, Pushwoosh, and

Taplytics, may offer advantages over FCM, including more features

or usable APIs. While it may seem that developers using third-party

PNSs can potentially avoid the security and privacy pitfalls of FCM,

Lou et al. demonstrated that third-party push providers rely on

FCM to deliver messages to Android devices with Google Play Ser-

vices [52]. The authors identified the dual-platform structure of

push notifications. The first service (“host notification platform”)

abstracts push messaging by providing an API that interfaces with

the second service (“transit notification platform”), which provides

a stable system-level communication channel to deliver push no-

tifications to user devices. While both FCM and third-party PNSs

offer developer-facing APIs for managing push notifications (i.e.,

2
We studied Android because the operating system is open source, allowing us to more

easily build instrumentation to monitor app execution.

3

Proceedings on Privacy Enhancing Technologies YYYY(X) N. Samarin et al.

the host notification platform), only FCM fulfills the role of the

transit notification platform and delivers messages internally to

Android devices with Google Play Services.

Furthermore, we found statements by several popular third-party

PNSs, such as OneSignal [58], Pusher [63], and AirShip [3] that

mention their dependence on FCM for sending push notifications to

Android devices. For instance, OneSignal states in a blog post that

“Google mandates that Android apps distributed through Google

Play leverage a single, shared connection provided by FCM” and

“OneSignal itself uses the FCM API internally to send messages to

Android devices” [58]. Therefore, these third-party PNSs expose

users to risks associated with FCM push notifications while poten-

tially introducing their own problematic data collection practices.

For instance, Reuters has previously reported that Pushwoosh—a

third-party PNS—misrepresented itself as based in the U.S. despite

actually being headquartered in Russia [61]. Although Pushwoosh

denied the claims [46], the revelation still led the U.S. Army and

Centers for Disease Control and Prevention (CDC) to stop using

apps containing the Pushwoosh SDK.

Android devices without preinstalled Google Play Services either

do not properly support push notifications or use an alternative

platform. Most notably, Android devices sold in China do not in-

clude Google Play Services, but use another preinstalled service

provided by the phone manufacturer, such as Huawei Mobile Ser-

vices (HMS), to handle push notifications. There are other Android

variants outside of China that do not come with Google Play Ser-

vices preinstalled, such as FireOS, which runs on Amazon devices

and uses Amazon Device Messaging (ADM) instead of FCM. These

variants constitute a small share of the global Android market [31]

and are outside the scope of our analysis.

Other alternatives, such as UnifiedPush [86] or Samsung Push

Service [22], rely on apps to receive push notifications in place of

Google Play Services. However, we argue that such solutions do not

represent equivalent alternatives, as they require users to install

an additional app and developers may still use FCM as the push

service, unbeknownst to app users. Thus, we specifically focus on

data shared with Google’s FCM, regardless of the specific third-

party service running on top of it. (That is, our instrumentation

is agnostic as to whether it captured messages sent natively using

FCM or another third-party API built upon it.)

2.3 Threat Model
FCM acts as an intermediary between the server-side and client-side

applications and uses push tokens to identify the device where push

notifications should be forwarded. While efficient, this architecture

poses three significant privacy risks to users [27, 99]:

Disclosure. The contents of a push notification and its meta-

data may be disclosed to unauthorized entities.

Linking. Push tokens may be linked or attributed to specific

users or behaviors.

Identification. Individuals may become identified based on

the information linked to their device’s push tokens.

The primary threat model that we consider is the use of legal

processes to request FCM push tokens linked to a targeted device

and stored by the app developer. In the context of secure messaging

apps, knowing the pseudonym (i.e., username) of the targeted user

may suffice. Even if the app developer does not collect other identi-

fying personal information, they must still store registration tokens

to route the push notifications to the user’s device through FCM

servers. After obtaining the push tokens from the app publisher,

law enforcement can request that Google provide all information

linked to the given push token, which may include the contents

and metadata of the associated push notifications. Combining these

pieces of personal information increases the risk of identification.

This threat model is not theoretical. In December 2023, U.S. Sen-

ator Ron Wyden published an open letter confirming that govern-

ment agencies collect user information by demanding push notifica-

tion records from Google and Apple through legal processes [100].

Since then, journalists found more than 130 search warrants and

court orders going back to 2019 (e.g., [20, 87, 88]) in which inves-

tigators had demanded that tech companies, notably Wickr and

TeleGuard—both advertised as end-to-end encrypted secure mes-

saging apps—turn over push tokens associated with accounts of

specific users. In the case of TeleGuard, an FBI agent then asked

Google to hand over all information connected to the push token,

which Google responded to with account names and IP addresses

associated with those accounts [40]. Furthermore, Apple disclosed

in its transparency report for the second half of 2022 that it received

70 requests worldwide seeking identifying information about Apple

Accounts (formerly known as Apple IDs) associated with 794 push

tokens and provided data in response to 54 (77%) requests. Google

does not specifically break out government requests for push noti-

fication records and, instead, reports these requests in aggregate

with other account data requests [9].

We hypothesize that many Android app developers transmit

sensitive information via established third-party push notification

channels and do not realize that they are not properly securing

it. In a departure from “privacy-by-design” principles [16], the

official Google Android Developers Blog recommends [69] that

developers using Google’s service “send as much data as possible in

the [push notification] payload” and fetch the remainder of the data

from the app server if needed. In the next paragraph of the blog,

developers are advised that they “can also encrypt FCM messages

end-to-end using libraries like Capillary,” thereby indicating that

FCM does not encrypt payload data by default (i.e., developers need

to rely on additional libraries). There is no other mention of end-to-

end encryption in the blog. Thus, questions remain as to whether

developers follow this optional guidance.

Google’s FCM developer documentation [36] states that “depend-

ing on your needs, you may decide to add end-to-end encryption to

data messages” and “FCM does not provide an end-to-end solution.”

No further guidance is given on what information is appropriate

to send. In contrast, Apple’s documentation for sending notifica-

tions [8] instructs developers not to include “customer information

or any sensitive data in a notification’s payload” and, if they must,

“encrypt it before adding it to the payload.” Even if the majority of

data sent using push notification channels is not personal, there

are examples in which it might be, such as some user-generated

content in instant messaging apps or sensitive information sent

by a banking or a health-tracking app. In these cases, app vendors

may be held liable for failing to safeguard or minimize the amount

of personal information sent via push notification servers and for

failing to disclose this practice in their privacy notices.

4

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies YYYY(X)

Figure 3: Google’s guidance to send as much data as possible
via FCM payloads, noting that end-to-end encryption can
optionally be used via additional libraries [69]. It is unclear
whether the data flows labeled “encrypted” refer to this op-
tion or the fact that the transmissions use TLS.

Given FCM’s role as an intermediary, we posed the question: do

apps leak user information through push notifications to the deliv-

ery infrastructure? We investigated this question by performing

both mobile app analysis and analysis of privacy disclosures.

3 RELATEDWORK
In this section, we provide an overview of related work on the

privacy and security risks of push notifications, mobile app analysis,

and analysis of privacy-relevant disclosures.

3.1 Risks of Push Notifications
Prior research has demonstrated how attackers can exploit mo-

bile push notifications to spam users with advertisements [50],

launch phishing attacks [102], and even issue commands to bot-

nets [2, 41, 47]. Other studies have revealed additional security is-

sues with PNSs that can result in the loss of confidentiality (i.e., user

messages get exposed to unauthorized parties) and integrity (i.e.,

users receive malicious messages from unauthorized parties) [17].

By assuming that the victim installs a malicious app, prior work has

demonstrated how attackers can abuse platform-provided OSPNSs,

including Google’s FCM (formerly known as Google Cloud Messag-

ing or GCM, and Cloud to Device Messaging or C2DM prior to that),

to steal sensitive messages or even remotely control the victim’s de-

vice [48]. Warren et al. described “security” as a key nonfunctional

requirement for implementing push notification mechanisms and

identified the push-to-sync strategy back in 2014 (which they called

“poke-and-pull”) as a viable protection strategy for protecting user

data from PNSs [93].

As described previously (§ 2.2), push notification architecture

can be separated into the host platform that provides the push API

and the transit platform that actually delivers the push notification

internally. Several studies looked at the security issues of third-party

PNS SDKs while excluding system-level transit platforms, such as

FCM from Google. One study analyzed 30 different third-party PNS

SDKs embedded in 35,173 Android apps and found that 17 SDKs

contain vulnerabilities to the confidentiality and integrity of push

messages, which an attacker can exploit by running a malicious

app on the victim’s device [17]. Similarly, Lou et al. performed

a security and privacy analysis of the twelve most popular PNSs

and compared their behavior in 31,049 apps against information

practices disclosed in the privacy policies of those PNSs [52]. They

found that out of twelve third-party PNSs, six PNSs collect in-app

user behavior and nine collect location information, often without

awareness or consent of app users. As the authors focused only on

the host platforms, their analysis excluded FCM (and other transit

platforms) on the basis of them being a “trustful service provider.”

We complement this work by focusing instead on the privacy risks

of transit notification platforms, in particular, FCM from Google.

In recent years, researchers have analyzed PNSs from the per-

spective of privacy protection goals that complement the classic

“CIA triad” (confidentiality, integrity, and availability), such as un-

linkability, transparency, and intervenability [38]. One study, for

instance, considered an adversary with the capability to silently

sniff packets directed to or from the victim and actively trigger

push notification messages to the target’s personal device [51]. The

authors demonstrated that under these assumptions, an adversary

on the same network can deidentify the victim even if they use an

online pseudonym. We complement these studies by focusing on

FCM privacy risks in the context of secure messaging apps.

3.2 Mobile App Analysis
Numerous studies have also investigated the security and privacy

ramifications of mobile apps (e.g., [26, 43, 77, 83]). Most current

methods for evaluating mobile app actions depend on static analy-

sis [30, 37, 44, 105], which examines the app’s source code without

executing it. However, this technique is limited as it can only iden-

tify the potential behaviors of a program, not if and to what degree

the program exhibits them. For instance, it is generally infeasible to

predict the full set of execution branches that a program will take.

Alternative methods, such as taint tracking [23], which tracks the

flow of data as it propagates through the application, come with

their own challenges, including affecting app stability [15].

A newer approach involves adding instrumentation to the An-

droid operating system to monitor apps’ access to personal informa-

tion at runtime [84, 95–97]. This allows researchers to investigate

different app behaviors, including app-associated network traffic.

Prior solutions to monitoring mobile app transmissions generally

involve using proxy software (e.g., Charles Proxy,
3
mitmproxy,

4

etc.) and suffer from serious shortcomings. First, they route all the

device traffic through the proxy, without automatically attributing

traffic to a specific app running on the device. While some traffic

may contain clues (e.g., content and headers that may identify apps,

3
https://www.charlesproxy.com/

4
https://mitmproxy.org/

5

https://www.charlesproxy.com/
https://mitmproxy.org/

Proceedings on Privacy Enhancing Technologies YYYY(X) N. Samarin et al.

e.g., HTTP User-Agent headers), other traffic does not, and at-

tributing traffic to the app is a laborious and uncertain process [64].

Second, proxies often cannot automatically decode various obfusca-

tions, including TLS with certificate pinning. Instead, by capturing

traffic from the monitored device’s OS, these issues are eliminated.

This approach can bypass certificate pinning, extract decryption

keys from memory, and map individual sockets to process names,

thereby offering precise attribution to specific apps.

3.3 Analysis of Privacy Disclosures
Prior research has focused on understanding apps’ andwebsites’ pri-

vacy practices by analyzing disclosures made in privacy policies [7,

39, 92, 104, 105]. Some proposed systems, such as policheck [7],

maps [104] and hpdroid [24], which automate the process of com-

paring disclosures made in privacy policies about how user data is

used, collected, or sharedwith personal data transmissions observed

as a result of performing technical analyses [7, 72, 92, 104, 105]. The

literature also proposed systems, such as Polisis [39], PI-Extract [14]

and PrivacyFlash [103], which made it possible to transform privacy

policies into formats that are more understandable to users or auto-

generate policies that reflect actual app behaviors. Linden et al. [49]

found that disclosures made in privacy policies improved as a result

of GDPR enforcement, but that more improvements would have

to be made before they can be considered usable and transparent

to users. Other recent studies have also examined the accuracy of

disclosures made in privacy policies [6, 57, 68, 92].

Additionally, Google’s Play Store requires developers to provide

privacy labels [35]. Privacy labels communicate information prac-

tices to users in a visually succinct way. For example, apps may

list the data types (e.g., names, phone numbers, identifiers) col-

lected and shared with third parties. As with privacy policies, these

privacy labels are required by the Google Play Store’s terms of ser-

vice to be thorough and complete [35]. However, Google states in

their guidelines that “transferring user data to a ‘service provider’”

should not be disclosed as data sharing in the app’s privacy la-

bels [35], limiting their scope and potential utility. Other studies

have also demonstrated the inconsistencies between privacy labels

and privacy policies [76], privacy labels in the Google Play Store

and Apple App Store for the same apps [66], and practices disclosed

in privacy labels and behaviors observed among iOS apps [45, 101].

4 METHODS
Our primary research question concerns how secure messaging

apps’ usage of FCM impacts user privacy. To answer this question,

we identified a set of apps from the Google Play Store and compared

the claims made in their privacy disclosure documents with our

static and dynamic analysis of those same apps.

The diagram in Figure 2 outlines the main actors and commu-

nications involved in push notification usage in secure messaging

apps. The messaging app is installed on the phone/device of the

sender and the recipient. First, the sender composes their message,

and some content gets sent over the network to the app’s server (1).

Then, the server uses the FCM API to construct the push notifica-

tion with the required payload. The FCM API sends the notification

to Google’s FCM server (2), which then forwards it to the recipient

device (3) using a long-lived TCP connection initiated by Google

Play Services. Finally, the data is parsed and packed into an intent

that is then broadcast to the app, which displays the message in the

form of a notification. Inadvertent data leakage to Google occurs

when the server places user information as plaintext in the push

notification payload. Crucially, users and developers are likely un-

aware that Google may receive and, sometimes, retain
5
message

contents and other metadata associated with the push notification.

As highlighted in § 3, numerous prior works evaluate the security

and privacy of end-to-end (e2e) encryption and its implementation

in secure messaging apps, including many of the ones in our corpus.

However, our work is explicitly not investigating these claims of

e2e encryption. Therefore, we are not interested in recording the

traffic sent over a network connection. Rather, our interest is in

determining whether implementing push notification functionality

in a given app leaks personal message content to parties other than
the app developer, specifically to Google via FCM. Therefore, we are

primarily interested in what data the app’s server sends to FCM

via network connection. However, because we are out-of-band

from this network connection, the best alternative is to record the

inbound/outbound traffic on the recipient’s device to infer which

data may have been sent from the server to FCM. If the sender’s

plaintext message content is present in the push notification sent

to the recipient’s device from FCM, then it is clear that the app

server did leak the user’s message content to FCM. However, if the

push notification sent to the recipient’s device does not contain

the sender’s plaintext message, then it may be likely that the app

server did not leak the user’s message content to FCM.
6
For apps

that fall into this category, we additionally want to understand the

techniques they leverage to avoid leaking user message content

and metadata to FCM.

4.1 App Selection
We selected messaging apps that made claims about the privacy

of users’ messages (herein, “secure messaging apps”). For example,

Telegram’s homepage promotes its app as “private” and states that

“Telegram messages are heavily encrypted” [78]. Similarly, Signal’s

homepage encourages people to “speak freely” because the Signal

app has a “focus on privacy” [71]. Signal publicly writes about what

data their app collects and the fact that—in response to a legal sub-

poena requesting a range of user information—Signal is only able

to provide “timestamps for when each account was created and the

date that each account last connected to the Signal service” [70].

WhatsApp also explicitly markets the privacy benefits of their app

and states, “[y]our privacy is our priority. With end-to-end encryp-

tion, you can be sure that your personal messages stay between

you and who you send them to” [80, 81]. Because secure messag-

ing apps make these claims about the privacy of users’ messages,

many users utilize these apps in sensitive contexts. For example,

Telegram, Signal, and WhatsApp, three of the apps we analyzed,

are frequently used by protesters worldwide [73, 89]. The apps in

our data set, a subset of all secure messaging apps, are widely used

and encompass over 2.8 billion users and 6.1 billion installs.

5
E.g., FCM servers retain messages by default when the recipient device is offline.

6
If the app server has access to the sender’s plaintext message, then it is always possible

that it is leaked to third-parties in ways that are not externally detectable, since traffic

between the app server and these third parties is not observable.

6

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies YYYY(X)

Material Representations. The selection of messaging apps

based on their privacy claims is not only a prudent approach for

users prioritizing the confidentiality of their communications, but

also a legally-grounded strategy, reflecting the enforceable nature

of such assertions. When companies publicly assert their services’

privacy and security features, these claims become material repre-

sentations that can significantly influence consumer choices. Impor-

tantly, material misrepresentations are actionable under consumer

protection laws. For instance, under the FTC Act
7
(and various

state consumer protection laws), businesses in the U.S. are prohib-

ited from materially misrepresenting their practices to consumers.

The Federal Trade Commission (FTC) and state attorneys general

actively monitor and pursue companies that fail to uphold their pri-

vacy promises (regardless of whether they are made in privacy poli-

cies [18] or marketing materials [19]). This enforcement protects

consumers and reinforces the message that privacy and security as-

sertions are material representations that have legal consequences

and can affect consumer choices.

One such notable case is that of Zoom, in which the company

faced a regulatory enforcement action for erroneously claiming to

offer end-to-end encryption in its marketing materials, a feature

it did not fully provide at the time [25]. This incident underscores

the seriousness with which authorities treat misrepresentations

in the digital privacy domain, highlighting the risks companies

face when they do not accurately describe their data protection

measures. Thus, evaluating messaging apps based on their stated

privacy features is not only a measure of their utility in sensitive

contexts, but also an assessment of their compliance with legal

standards for truthfulness in advertising, ensuring that users can

rely on the integrity of these claims.

Selection Procedure. We aimed to create a corpus of secure

messaging apps that made privacy claims to users, such that it

includedwidely-used apps andwas of a tractable size to perform our

analyses. To create this corpus, we first had to identify a set of the

most popular secure messaging apps in the Google Play Store. We

focused on apps in the Communication category in the Google Play

Store, which included a broad range of messaging apps, including

email clients, mobile browsers, and SMS apps. Within this category,

we used open-source tooling
8
to identify apps whose descriptions

included one or more keywords related to online messaging
9
and

explicitly excluded keywords related to non-messaging apps.
10

To establish this list of keywords, we manually reviewed the

descriptions of apps in the Communication category and iteratively
added keywords to our inclusion and exclusion lists until we man-

ually determined that the resulting set of apps included secure

messaging apps that do not fall back onto SMS. Then, we excluded

any app whose description did not include the terms “privacy” or

“security.” Finally, we only selected apps with more than a million

installations. This penultimate set contained 24 apps. We decided

not to analyze Google Messages because it is owned by Google

and, therefore, there is no notion of third-party leakage in that app;

Google runs the infrastructure that provides the push notifications.

7
15 U.S.C. §45.

8
https://github.com/facundoolano/google-play-scraper

9
“messaging,” “chat,” “internet,” “friend,” and “in touch.”

10
“SMS,” “browser,” “VPN,” “recover,” and “voicemail.”

We also excluded Leo Messenger, which appeared to aggregate

other messaging apps and did not have messaging functionality in

its own right, as well as Gap Messenger, for which we were unable

to register. Therefore, the final set contained 21 apps.

4.2 App Analysis
We performed dynamic and static analysis on each secure messag-

ing app in our data set to learn how the usage of FCM impacted

user privacy. Specifically, did the app naïvely leverage the default

FCM behavior and include plaintext user content? Or, did the app

use specific techniques to protect the privacy of user messages

above and beyond what FCM offers by default? (For example, by

integrating the Capillary library [13] mentioned in Google’s blog.)

Data Types. In our analysis, we searched for specific data types

that we expected to appear in the content of push notifications. To

compile the list of these data types, we started with the data types

defined and used by Google’s privacy labels [35], which also enabled

us to compare observed practices with the privacy labels declared

by each app’s developer. As we present in Section 5, we found

evidence of the following data types being leaked to Google: (1)

Device or other IDs, (2) User IDs, (3) Name, (4) Phone Number, and (5)
Message Contents. Unlike (1) to (4), the contents of communications

are afforded additional protections in many jurisdictions due to

their sensitive nature.
11

We present additional information about

these data types in Appendix A.

We performed our analysis in early 2023 with an instrumented

version of Android 12, at a time when the majority of users (more

than 85%) had Android version 12 or below installed on their

phones [75]. Using a Pixel 3a phone, we installed each app from

Google Play Store and saved its Android package (APK) files and

privacy disclosures. We also created test accounts where necessary.

We then used dynamic analysis to identify what personal infor-

mation got leaked to FCM and static analysis to understand what

strategies apps used to protect user privacy.

Data Leakages. We used dynamic analysis to record the con-

tents of a push notification after our device received it from the

FCM server. We instrumented the keySet() method of the stan-

dard BaseBundle class [32], which gets called by the FCM SDK, and

logged the contents of the Bundle only if it contained the default

keys in a push notification, such as “google.message_id.” Addition-

ally, we used Frida [29] to instrument the handleIntentmethod of

FirebaseMessagingService [34], which listens and receives FCM

push notifications as broadcasts from Google Play Services. This

method then delivers push notification contents to app-specific

callback methods (e.g., onMessageReceived), which allow the app

to handle and display push messages as notifications to users.

The main goal was to trigger a push notification so that the

resulting payload sent from Google’s FCM server to our test device

could be recorded (connection 3 in Figure 2). We installed each

app on two devices and triggered push notifications by sending

messages from one device to another. On the recipient’s Pixel 3a

device, we recorded the push notification contents as they were

received by the app using the instrumented methods.

11
E.g., Title I of the Electronic Communications Privacy Act of 1986 (ECPA) [90].

7

https://github.com/facundoolano/google-play-scraper

Proceedings on Privacy Enhancing Technologies YYYY(X) N. Samarin et al.

Privacy Strategy. The push notifications that we observed fell

into one of the following three categories:

(1) No Protection. The FCM push notification contained all of

the information (i.e., username and message contents) that

the app uses to display the notification.

(2) Some Protection. The FCM push notification contained

some personal information but, notably, did not include the

displayed message contents in plaintext.

(3) Full Protection. The FCM push notification did not contain

any personal information, and any additional fields were

empty or always contained unique values (i.e., not corre-

sponding to any persistent identifiers).

For the first case, we simply assumed that the app does not use

any privacy protection strategies. For the latter two cases, deter-

mining the strategy was often straightforward. For instance, Skype

(in secret chat) included EndToEndEncryption as the value for the

messagetype key, while Session included the ENCRYPTED_DATA key
with a value corresponding to an encoded message. Signal, on the

other hand, received FCM push notifications that only contain the

empty field notification without any other content.

To validate the identified strategies, we performed static analysis.

We first decompiled the APKs for each closed-source app using the

jadx12 Dex to Java decompiler. Analyzing obfuscated code was

often complex. We searched for FirebaseMessagingService to

find services that extend it. We then examined the code of these ser-

vices to see how they implement the onMessageReceived method,

which gets invoked by the FCM SDK whenever the app running

on the client device receives a push notification. Crucially, the SDK

also passes a hash table of type RemoteObject containing informa-

tion necessary to display the notification to the user and, optionally,

a data payload to perform any custom functions triggered by the

receipt of a notification.

We tried to determine whether the push notifications contain

sensitive content by observing the strings defined in code and used

in the names of the keys or in print statements. We then traced

the message and any variables assigned to the sensitive content

until we reached the code for displaying the notification to the user.

Appendix B includes the questions we used to analyze the source

code of apps in our data set.

4.3 Privacy Disclosure Analysis
The final phase of our analysis involved comparing the claims that

app developers made in their privacy disclosures to the ground truth

that we observed from our dynamic and static analysis. Therefore,

we focused on the 11 app developers that we observed including

personal information in the push notifications sent via Google’s

FCM (§ 5). We wanted to determine whether a user could reason-

ably conclude that the app guarantees the security and privacy

of their personal information based on the information presented

by the app vendor in their Play Store description, official website,

marketing and promotional materials, and other documentation.

Moreover, we wanted to understand whether developers disclose

the sharing of personal information for the purposes of providing

push notifications in their privacy policies.

12
https://github.com/skylot/jadx

To achieve this, several researchers from our team first located

statements by app vendors that talk about the security and pri-

vacy of messages. We also determined whether the apps (that we

observed sharing personal information with Google) claimed to

support end-to-end encryption by default, potentially misleading

the users about the privacy of their messages or their metadata. Fi-

nally, we read each privacy policy to determine whether they stated

that the particular types of personal information we observed might

be shared with service providers for the purpose of app functional-

ity. If it did, we further recorded whether the privacy policy listed

the specific service providers or the specific types of data shared

for the purpose of app functionality, which we compared against

the results of our app analysis. By cross-referencing the different

sources of information about an app’s privacy practices, we aimed

to build a holistic picture of how each developer frames the privacy

risks associated with use of their app. We saved static copies of

each privacy disclosure and the privacy policies using the Internet

Archive’s Wayback Machine [11].

4.4 Ethical Research
Our work involves reverse-engineering the client apps of popular

Android secure instant messengers in order to glean the types of

information being leaked to Google’s FCM servers in push notifica-

tions. We performed our analysis by running each app on our test

devices, with test accounts, on a segmented and private network,

and observing both the network traffic that resulted and, when

that network traffic did not reveal personal information, the static

code. We were only interested in observing the leakage of personal

information pertaining to our test devices; we did not interact with

other app users nor did we make any attempts to obtain personal in-

formation of other users. Our study did not involve human subjects,

nor did it involve unauthorized access to protected systems.

As we discuss in Section 5, we found inconsistencies between

the observed app behavior and promises made by developers of

several apps from our data set (see also Table 1). We disclosed our

findings to those developers to ensure these inconsistencies can be

addressed promptly (see § 7 for a further discussion).

5 RESULTS
We present findings from our analysis of secure messaging apps,

including the personal information observed being shared with

Google’s FCM servers and the mitigation strategies employed by

apps to prevent such leakage. Additionally, we analyzed statements

made by app developers to determine whether they make any pri-

vacy or security guarantees and whether they disclose the sharing

of personal information for push notifications.
13

5.1 App Analysis
We found that almost all analyzed applications used FCM. Of the

popular secure messaging apps that we identified, 20 of 21 apps

relied on FCM to deliver push notifications to users. One exception

among those apps was Briar messenger, which prompted the user

to enable unrestricted battery usage, allowing the app to poll for

new messages in the background. (Several other apps in our dataset

13
Supplemental materials are available at https://github.com/blues-lab/fcm-app-

analysis-public.

8

https://github.com/skylot/jadx
https://github.com/blues-lab/fcm-app-analysis-public
https://github.com/blues-lab/fcm-app-analysis-public

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies YYYY(X)

App
Privacy
Strategy

Message
Content Device IDs User IDs Name Phone #

Skype (default) None #
(secret chat) E2EE # #

Snapchat E2EE # # #
Viber Push-to-Sync # #
LINE E2EE # # # #
Discord None # #
WeChat None # #
JusTalk None # #
SafeUM E2EE # # # #
YallaChat E2EE # # #
Comera Push-to-Sync # # #
Wire Push-to-Sync # # #

Table 1: This table contains all analyzed apps, for which we observed personal information leakage to FCM servers in the
process of delivering push notifications. The specific observed category of data is indicated by (evidence) and# (no evidence).

also prompted us to enable unrestricted battery usage, however,

those apps still relied on FCM.) Since our study focuses on FCM,

we excluded Briar and analyzed only those applications that relied

on FCM to deliver push notifications.

Of the 20 apps we analyzed, 11 included personal information

in data sent to Google via FCM such that that data was visible to

Google. All 11 apps leaked message metadata, including device

and app identifiers (3 apps), user identifiers (10 apps), the sender’s

or recipient’s name (7 apps), and phone numbers (2 apps). More

alarmingly, we observed 4 apps—which have cumulative installs in

excess of one billion—leak message contents. We present informa-

tion about the observed practices in Table 1.

It is worth noting that not all of the observed behaviors here are

necessarily undisclosed sharing. Undisclosed sharing occurs when

data we observed being shared from our static and/or dynamic

analysis was not disclosed in the privacy disclosures we analyzed.

Whether the observed behaviors do constitute undisclosed shar-

ing depends on the findings from our privacy disclosure analysis,

discussed below (§5.3).

5.2 Mitigation Strategies
Of the 16 apps that did not send message contents to Google.

14
our

static analysis revealed two general mitigation strategies described

below: end-to-end encryption and push-to-sync. Ultimately, we

observed 9 apps out of 16 employ either end-to-end encryption or

push-to-sync strategies to prevent leaking any personal information

to Google via FCM. The remaining 7 apps still leaked metadata, but

not the message contents. See Table 2 for more information.

End-to-End Encryption. We determined that 8 apps employed

an end-to-end encryption strategy to prevent privacy leakage to

Google via FCM. In this strategy, when the user launches the app

for the first time, the app provisions a keypair and does a secure key

exchange between the user’s device and the app’s server. The app

will then develop a session key that it can use to decrypt messages

from the server. The server encrypts messages it sends using the

session key before it goes to FCM.

14
Skype used e2e encryption to protect message contents only in secret chats, which

is not the default.

firebase:message:10276:START:{
google.delivered_priority=high,
google.sent_time=1677001395829,
google.ttl=2419200,
google.original_priority=high,
from=312334754206,
google.message_id=0:1677001395846147...,
notification=,
google.c.sender.id=312334754206

}

Figure 4: Example payload from within the RemoteMessage
object received by the Signal app. Note the empty notifica-
tion field, indicating the correct usage of the push-to-sync
notification strategy.

As depicted in Table 2, of the 8 apps that utilized the end-to-end

encryption (e2e) strategy, only 4 (Facebook Messenger, Telegram,

Session, and KakaoTalk) did not leak any personal information to

Google via FCM. The remaining 4 (Snapchat, SafeUM, YallaChat,

and LINE) still leaked metadata, including user identifiers (3 apps)

and names (3 apps).

Push-to-Sync. We observed 8 apps employ a push-to-sync strat-

egy to prevent privacy leakage to Google via FCM. In this mitigation

strategy, apps send an empty (or almost empty) push notification

to FCM. Some apps, such as Signal, send a push notification with

no data (aside from the fields that Google sets; see Figure 4). Other

apps may send an identifier (including, in some cases, a phone num-

ber). This push notification tells the app to query the app server

for data, the data is retrieved securely by the app, and then a push

notification is populated on the client side with the unencrypted

data. In these cases, the only metadata that FCM receives is that the

user received some message or messages, and when that push noti-

fication was issued. Achieving this requires sending an additional

network request to the app server to fetch the data and keeping

track of identifiers used to correlate the push notification received

on the user device with the message on the app server.

9

https://play.google.com/store/apps/details?id=com.skype.raider
https://play.google.com/store/apps/details?id=com.snapchat.android
https://play.google.com/store/apps/details?id=com.viber.voip
https://play.google.com/store/apps/details?id=jp.naver.line.android
https://play.google.com/store/apps/details?id=com.discord
https://play.google.com/store/apps/details?id=com.tencent.mm
https://play.google.com/store/apps/details?id=com.juphoon.justalk
https://play.google.com/store/apps/details?id=com.safeum.android
https://play.google.com/store/apps/details?id=com.yallatech.yallachat
https://play.google.com/store/apps/details?id=com.is.core.app
https://play.google.com/store/apps/details?id=com.wire

Proceedings on Privacy Enhancing Technologies YYYY(X) N. Samarin et al.

App Version Uses FCM?
Privacy
Strategy

Observed
Data Leakage

Min Installs
(millions)

Facebook Messenger v403.1.0.17.106 e2ee 2 5,000

WhatsApp v2.23.12.78 Push-to-Sync 2 5,000

Skype v8.93.0.408
none (default)

e2ee (secret chat)

4 1,000

Snapchat v12.28.0.22 e2ee 4 1,000

Telegram v9.4.4 e2ee 2 1,000

Viber v19.4.0.0 Push-to-Sync 4 1,000

LINE v13.4.2 e2ee 4 500

Discord v172.24 none 4 100

Kakao Talk v10.0.7 e2ee 2 100

Kik v15.50.1.27996 Push-to-Sync 2 100

Signal v6.11.7 Push-to-Sync 2 100

WeChat v8.0.30 none 4 100

JusTalk v8.6.10 none 4 10

SafeUM v1.1.0.1548 e2ee 4 5

YallaChat v1.4.2 e2ee 4 5

Briar v1.4.23 # Polling 2 1

Comera v4.0.1 Push-to-Sync 4 1

Element v1.5.22 Push-to-Sync 2 1

Session v1.16.7 e2ee 2 1

Threema v5.0.6 Push-to-Sync 2 1

Wire v3.82.38 Push-to-Sync 4 1

TOTAL installs 15,026
Table 2: Our data set of analyzed apps. Usage of Firebase Cloud Messaging (FCM) is indicated by (does use) and #(does not
use). Whether or not an app leaked personal information to FCM is indicated by2(no evidence) and 4(evidence). See Table 1 for
details on which personal data is leaked by apps marked with 4. Apps are sorted by minimum install count and alphabetically
by app name.

As detailed in Table 2, only 5 (Whatsapp, Signal, Threema, El-

ement, and Kik) did not leak any personal information to Google.

The remaining 3 (Viber, Wire, and Comera) leaked metadata, in-

cluding user identifiers (all 3 apps), device and app identifiers (2

apps), and phone numbers (2 apps).

5.3 Privacy Disclosure Analysis
We analyzed privacy disclosures for the 11 apps that included per-

sonal information in the push notifications sent via Google’s FCM.

One of our aims was to determine whether a user could reasonably

conclude that the app guarantees the security and privacy of their

personal information based on the information presented by the

app vendor in their Play Store description, official website, market-

ing and promotional materials, and other documentation. Table 3

provides details for each app.

Marketing Claims. First, we discuss the 4 apps that leaked

the actual contents of push notification messages: Skype, WeChat,

Discord, and JusTalk. We found that out of these four apps, only

JusTalk claimed to be end-to-end secure, stating: “All users’ personal

information (including calling and messaging data) is end-to-end

encrypted and is split into multiple random paths which ensure

it can’t be monitored or saved by servers. Moreover, all the per-

sonal data is never shared with any third party. Enjoy safe and

free calls” [42]. Nevertheless, we clearly observed the contents of

our messages being sent without end-to-end encryption via FCM’s

servers while delivering push notifications (see Figure 5).

firebase:message:10279:START:{
google.delivered_priority=high,
google.sent_time=1677010922128,
google.ttl=2419200,
google.original_priority=high,
resend=0,
MtcImTextKey=Hello Dustin! How are you doing?,
MtcImTimeKey=1677010922031,
MtcImUserDataKey={},
MtcImInfoTypeKey=Text,
from=144552557193,
toUid=9999_43035938,
google.message_id=0:1677010922135234%...,
MtcImLabelKey=P2P/9999_43036012,
MtcImDisplayNameKey=Charlotte,
google.c.sender.id=144552557193,
MtcImMsgIdKey=0,
MtcImImdnIdKey=97866160-0e6a-495a-9932...,
MtcImSenderUidKey=9999_43036012

}

Figure 5: Payload contained inside the RemoteMessage
object received by JusTalk. Note the MtcImTextKey and
MtcImDisplayNameKey, which contain the unencrypted mes-
sage contents and username, respectively.

10

https://play.google.com/store/apps/details?id=com.facebook.orca
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.skype.raider
https://play.google.com/store/apps/details?id=com.snapchat.android
https://play.google.com/store/apps/details?id=org.telegram.messenger
https://play.google.com/store/apps/details?id=com.viber.voip
https://play.google.com/store/apps/details?id=jp.naver.line.android
https://play.google.com/store/apps/details?id=com.discord
https://play.google.com/store/apps/details?id=com.kakao.talk
https://play.google.com/store/apps/details?id=kik.android
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=com.tencent.mm
https://play.google.com/store/apps/details?id=com.juphoon.justalk
https://play.google.com/store/apps/details?id=com.safeum.android
https://play.google.com/store/apps/details?id=com.yallatech.yallachat
https://play.google.com/store/apps/details?id=org.briarproject.briar.android
https://play.google.com/store/apps/details?id=com.is.core.app
https://play.google.com/store/apps/details?id=im.vector.app
https://play.google.com/store/apps/details?id=network.loki.messenger
https://play.google.com/store/apps/details?id=ch.threema.app
https://play.google.com/store/apps/details?id=com.wire

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies YYYY(X)

Although the three remaining apps do not claim to employ end-

to-end encryption, both WeChat and Discord made statements

about their concern for privacy. For instance, WeChat said in their

Play Store description: “- BETTER PRIVACY: Giving you the highest

level of control over your privacy, WeChat is certified by TRUSTe”

[62]. Although Skype does not reference secure messaging for their

normal (default) chat functionality, they promise that “Skype private

conversations uses the industry standard Signal Protocol, allowing

you to have end-to-end encrypted Skype audio calls, send text

messages, image, audio, and video files” [56]. Although we did

not observe the content of the message being leaked when testing

Skype’s private conversation feature, we still observed the app

leaking device IDs, user IDs, and names via Google’s FCM.

For the remaining 7 apps that did not leak message contents,

we observed each of these apps make claims that could lead users

to believe that the apps do not share any personal information

with anyone and, except for Snapchat, claimed to be end-to-end

encrypted. For instance, SafeUM messenger put it plainly: “[w]e

never share your data with anyone. Never” [67].

Privacy Policies. We additionally read each privacy policy to un-

derstandwhether developers disclosed the sharing of personal infor-

mation for the purposes of providing push notifications. We found

that all 11 apps that shared personal information with Google’s

FCM servers stated that personal user data may be shared with

service providers (such as FCM) for the purpose of app functionality.

However, only two apps (JusTalk and YallaChat) enumerated the

types of personal information shared with such service providers,

which did not cover the types of information we observed being

shared, namely user IDs and names (for both apps) and message

contents (for JusTalk, as discussed above). Furthermore, three apps

(Viber, WeChat and Comera) did not specify which companies serve

as their service providers. Out of the remaining 8 apps, only 4 men-

tioned Google in the context of push notifications and/or FCM.

Given that only YallaChat included information about the types

of data shared with Google’s FCM, we were unable to determine

whether the specific data types we observed being shared would be

covered by these statements or not. For instance, Viber’s privacy

policy stated, without giving any specifics: “[w]e may disclose

your Personal Information to a contractor or service provider for

a business purpose. The types of personal information we share

for a business purpose, vary, depending on the purpose and the

function provided by the third party to whom we disclose such

information” [91]. While these statements may technically address

personal data sharing in the context of push notifications, they do

not meaningfully inform users about what information pertaining

to them is being shared and with whom.

6 DISCUSSION
The democratization of mass communications via the Internet has

created a new paradigm in which anyone can have a platform to

send a message. Consequently, anyone can now become a software

engineer and distribute software worldwide. By and large, this is a

good thing. However, it raises issues of professional responsibility

that have long been addressed by other more mature branches of

engineering. In most jurisdictions, one cannot simply decide to

become a civil engineer and erect a multi-story building. Due to

the inherent safety risks—to the individual, neighbors, and society—

most jurisdictions require that plans be submitted for approval.

In granting that approval, the plans are first checked for confor-

mance with building codes, which have been set (and periodically

revised) by professional societies with deep expertise. Once plans

are approved, multiple levels of oversight still occur: at various

steps during construction, building inspectors confirm that both

the plans have been followed and that no other safety issues have

been identified. Moreover, after construction has been completed,

governments are empowered to continually monitor for code vi-

olations, going so far as to condemn structures that pose safety

hazards. Of course, there is a reason for this oversight: building

codes are written in blood.

In the past decade or two, software engineering as a discipline

has only just begun to reckon with the complex sociotechnical is-

sues relating to harm and liability. While the collapse of a building

is likely to be more lethal than the inappropriate exfiltration of

sensitive user information, the latter may still pose risks to user

safety—even lethal ones. We chose to examine secure messaging

apps in this study because they can often embody these risks: on-

line messaging apps are increasingly being used by activists living

in oppressive regimes [85], who may find themselves in serious

jeopardy if their communications are inappropriately revealed. In

this specific instance, the inappropriate disclosure of users’ com-

munication and metadata does not require malice on the part of a

service provider for harm to come to the user. By nature of such

data collection, the service provider exposes the user to legal pro-

cesses: this may result in data the user legitimately did not believe

to exist coming into the hands of governments and private actors.

We emphasize that this risk is not merely theoretical; as previously

noted, U.S. Senator Ron Wyden published a letter that confirms

that government agencies do, in fact, collect user information by

demanding push notification records from Google and Apple [100].

Our analysis found that several prevalent secure messaging

apps—which imply that they will not share certain information

with third parties—do indeed share that information in plaintext

with Google via FCM (see Table 1). We found evidence of undis-

closed data leakage to FCM in apps that account for over 2 billion

installs. Users of these apps are likely unaware of these data leak-

ages: some of the privacy disclosures made by these apps often

explicitly promise not to share such personal information with

third parties, whereas others were so vaguely written that it was

unclear whether these behaviors are being disclosed (and how they

might comport in consumers’ minds with the companies’ marketing

materials that imply messaging data will be kept private). Conse-

quently, consumers may have a false sense of security when using

these apps for communicating. The undisclosed leakage of commu-

nication contents can harm users and potentially even innocent

bystanders who may be mentioned in communications.

6.1 Recommendations
Just as a contractor or owner-builder is ultimately responsible for

the adherence to local building codes and the risks associated with

deviations from them, software developers publishing apps for

public usage are responsible for the behaviors of those apps. This

11

Proceedings on Privacy Enhancing Technologies YYYY(X) N. Samarin et al.

App E2EE S/P Discloses
PI Sharing

Discloses
Companies

Discloses
Shared PI

Skype (default) # # #
(secret chat) #

Snapchat # #
Viber # #
LINE #
Discord # #
WeChat # # #
JusTalk
SafeUM #
YallaChat
Comera # #
Wire #

Table 3: This table contains information about the disclosures made by developers of apps, for which we observed information
leakage to FCM. indicates that we found evidence (or # if not) for each of the following statements: (E2EE) developer
states the app uses end-to-end encryption, (S/P) developer makes security or privacy-specific claims in the Google Play Store
description or on their official websites, (discloses PI sharing) developer discloses in their privacy policy the sharing of personal
information to service providers for app functionality purposes, (discloses companies) if the disclosure includes names of
companies and (discloses shared PI) if the disclosure includes specific types of personal information.

responsibility includes verifying that third-party components func-

tion as expected and that the ultimate behavior of the app is in

accordance with platform guidelines, the developer’s disclosures,

and applicable laws/regulations. The use of these third-party com-

ponents is not unique to software engineering: other branches of

engineering generally involve complex supply chains, yet there is

often a great deal of oversight. When Airbus builds a plane, they

may use engines from Rolls-Royce or electronics from Siemens; but

in addition to simply specifying the specifications and tolerances

that Airbus expects these components to conform to, they nonethe-

less validate those third-party components by launching chickens

at them at 600+ km/h (amongst other validation tests) [98]. Such

integration validations rarely exist for software in practice, despite
being recommended for nearly half a century now [28]. Indeed,

while we have no reason to believe that misleading or confusing

security and privacy claims are the result of malice, we believe that

the poor privacy practices that we document in this paper could

have been discovered and mitigated by the developers had they

inspected the traffic sent and received by their applications during

quality assurance processes. Thus, we offer recommendations to

different stakeholders on ways to address the identified security

and privacy issues.

6.1.1 App Developers. As the parties ultimately responsible for

their apps, app developers should perform the type of dynamic

analysis that we performed in this study as part of each and every

release cycle. This will help to ensure that users’ personal data

flows in accordance with reasonable expectations, applicable laws

and regulations, as well as platform policies. However, the best

way to ensure that push notifications do not leak sensitive user

information is to avoid sending sensitive user information via FCM

in the first place. We argue that developers should implement the

push-to-sync approach: the developer’s server should only send the

app a unique notification ID via FCM, which can then be used to

fetch the notification content from the developer’s servers securely.

Several developers correctly used the push-to-sync approach, which

resulted in no personal data being leaked by those apps. Others

should adopt this architecture in their apps.

6.1.2 Platforms and SDK Providers. At the same time, platform

owners and SDK providers are well-positioned to identify and cor-

rect issues in their tools and highlight security and privacy risks

in their documentation. For its part, Google provides an API that

results in developers systematically making very similar privacy

mistakes. This is not helped by Google’s guidance, which instructs

developers to “send as much data as possible in the FCM payload,”

and that if they want to do so securely, they must use an addi-

tional library [69]. This guidance departs from Google’s own data

minimization and secure-by-default principles [33] and recommen-

dations from other push notification providers, such as Apple [10].

We argue that the availability of usable, secure push notifica-

tions libraries, including Google’s Capillary [13], does not solve the

underlying problem. Developers generally trust Google’s security

practices and are largely unaware of the risk of personal informa-

tion leakage via push notifications. Furthermore, under current

regulatory regimes, Google is not obligated to do anything about

this: they provide a free API for developers, and despite the fact that

using it to send messages securely admittedly takes additional non-

obvious steps, there are no legal requirements that Google—or any

other SDK provider—provide a secure-by-default API. Furthermore,

as mentioned previously, Android app developers are effectively

required to use Google’s FCM to send push notifications for battery

consumption reasons. We argue, therefore, that real-world change

will require either applying regulatory pressure or other market-

corrective forces on platform owners to enforce privacy-by-design

principles for critical SDKs in the software supply chain, such as

Google’s FCM. Such a change would improve the privacy and secu-

rity of nearly all Android apps, because the use of FCM to deliver

push notifications on Android is nearly universal.

12

https://play.google.com/store/apps/details?id=com.skype.raider
https://play.google.com/store/apps/details?id=com.snapchat.android
https://play.google.com/store/apps/details?id=com.viber.voip
https://play.google.com/store/apps/details?id=jp.naver.line.android
https://play.google.com/store/apps/details?id=com.discord
https://play.google.com/store/apps/details?id=com.tencent.mm
https://play.google.com/store/apps/details?id=com.juphoon.justalk
https://play.google.com/store/apps/details?id=com.safeum.android
https://play.google.com/store/apps/details?id=com.yallatech.yallachat
https://play.google.com/store/apps/details?id=com.is.core.app
https://play.google.com/store/apps/details?id=com.wire

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies YYYY(X)

The use of these types of APIs also represents the classic usable

security problem (wherein application developers are the “user”):

the user is not qualified to be making the decisions that are forced

upon them, whereas those forcing them to make these decisions

are in a much better position to make those decisions on the users’

behalf. Prior research shows that developers, despite being the

party ultimately responsible for the behaviors of their software,

are woefully unprepared to make these types of decisions [1, 4].

And thus, we are faced with a situation in which the parties most

equipped to fix these types of problems (e.g., by creating more

usable documentation that highlights security and privacy risks,

making SDK settings secure by default, proactively auditing how

their services are used in practice, etc.) are not incentivized to do so,

whereas the parties who are ultimately responsible are generally

incapable and do not understand their risks or responsibilities. As

a result, this is fundamentally an economics problem concerning

misaligned incentives [5]: in a perfect world, the responsibility

for handling users’ data responsibly would be placed upon those

according to their abilities, shifted from those according to their

needs [54]. This is not the world in which we currently live.

Yet, things are improving. In recent years, the U.S. Government

has promoted the strategy of shifting the burden of software se-

curity away from individuals, small businesses, and local govern-

ments and onto the organizations that are most capable and best-

positioned to reduce risks [82]. In line with this initiative, the U.S.

Cybersecurity and Infrastructure Security Agency (CISA) and 17

U.S. and international partners published an update in August 2023

to joint guidance for implementing secure-by-design principles [21].

One secure product development practice, in particular, highlights

the need to provide secure defaults for developers by “providing

safe building blocks...known as ‘paved roads’ or ‘well-lit paths.’”

We believe that push notification providers can similarly apply

privacy-by-design principles [60] to safeguard the privacy of users

who cannot easily manage the risks.

Without correctly aligned incentives to motivate platforms and

SDK providers to make their systems secure by default (including

documentation that highlights security and privacy risks), devel-

opers will continue to be placed in this position and will continue

to consistently make these types of mistakes. Thus, until software

engineering becomes a more mature field with formalized over-

sight, validation, disclosure, and auditing procedures, these types

of errors will proliferate, leaving end users at risk.

7 RESPONSIBLE DISCLOSURE
Responsible disclosure is a critical component of security and pri-

vacy research. We reported our substantive findings to the 11 app

developers who leaked at least one personal data type to Google’s

FCM service. We tried contacting the developers via various contact

methods, including formal bug bounty programs, emailing security

teams, or failing that, general support contacts. The app developers

for whom we could find contact information were sent a summary

report on or before June 7, 2024. We received an acknowledgment

of our email from 5 developers of the 11 we contacted.

At the time of publication, the remaining 6 app developers to

whom we disclosed our findings had not replied; discussions are

ongoing with several companies regarding how they should fix

the identified issues. We look forward to continue engaging in pro-

ductive conversations to help developers understand how to adapt

their push message architectures to better protect user privacy.

8 LIMITATIONS
Many apps beyond secure messaging apps might send private data

through push notifications. Our study only focused on secure mes-

saging apps because most of them claim to focus on user privacy,

thus, they would be among the most likely apps to take proactive

steps to prevent the leakage of user data to FCM (and presumably

users of these apps are more likely to believe that their communica-

tions are secure). We suspect that privacy leakage via Google FCM

may be even more prevalent within apps in other contexts. Future

work should look at both less popular secure messaging apps and

apps in other contexts to observe to what extent, if at any, they

mitigate the leakage of sensitive personal data to Google via FCM.

We also performed our analysis using an older Pixel 3a device

running Android 12. We are unaware of any substantial changes

in Android 13 and 14 that would have a material impact on our

observed findings. Our device supported security updates and the

installation of all the apps that we analyzed for this research. We

ran these apps and received push notifications from FCM without

observing any undesirable impact on app performance. Further-

more, at the time we began our analysis in early 2023, the majority

of users (more than 85%) used Android version 12 or below [75].

While most people who use a mobile phone use an Android device,

iOS also has a significant share of the mobile phone market and

tends to bill itself as having more privacy-preserving practices. Fu-

ture work can also explore whether private user data is leaked to

Apple or other third parties via the push notification infrastructure

available to developers in the iOS ecosystem.

We looked specifically at privacy leakage through push notifica-

tions that rely on FCM. As far as we know, FCM is also used in other

applications, on Android and beyond; how this fact affects privacy

leakage across other applications is not well understood. Future

work could investigate the privacy implications of FCM across those

applications. Within the Android ecosystem, there may exist other

patterns or tools provided by Google or by other popular third-party

libraries that also incur unexpected privacy leakage. Future work

could look for such patterns beyond the Android platform, such

as iOS, and identify how other ecosystem players like Apple and

Google can craft a more trustworthy ecosystem to provide more

privacy-preserving defaults to the broadest base of users.

“The personal and social consequences of any medium—
that is, of any extension of ourselves—result from the
new scale that is introduced into our affairs by each
extension of ourselves, or by any new technology”

—Marshall McLuhan [55].

ACKNOWLEDGMENTS
This work was supported by the U.S. National Science Foundation

under grant CCF-2217771, the Center for Long-Term Cybersecurity

(CLTC) at U.C. Berkeley, the KACST-UCB Center of Excellence for

Secure Computing, an NSERC Discovery Grant, and a grant from

the Silicon Valley Community Foundation. We would especially

like to thank the Office of U.S. Senator RonWyden for outreach that

13

Proceedings on Privacy Enhancing Technologies YYYY(X) N. Samarin et al.

inspired this work, as well as Chris Hoofnagle for early support

and feedback, and of course, Refjohürs Lykkewe.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,

Michelle L Mazurek, and Christian Stransky. 2017. Comparing the usability of

cryptographic apis. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
154–171.

[2] Mansour Ahmadi, Battista Biggio, Steven Arzt, Davide Ariu, and Giorgio Gi-

acinto. 2016. Detecting misuse of google cloud messaging in android badware.

In Proceedings of the 6th Workshop on Security and Privacy in Smartphones and
Mobile Devices. 103–112.

[3] AirShip. 2023. Android SDK Setup. https://docs.airship.com/platform/mobile/

setup/sdk/android/. (Accessed on 10/10/2023).

[4] Noura Alomar and Serge Egelman. 2022. Developers say the darnedest things:

Privacy compliance processes followed by developers of child-directed apps.

Proceedings on Privacy Enhancing Technologies 4, 2022 (2022), 24.
[5] R. Anderson. 2001. Why information security is hard - an economic perspective.

In Seventeenth Annual Computer Security Applications Conference. 358–365. https:
//doi.org/10.1109/ACSAC.2001.991552

[6] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker,

William Enck, Bradley Reaves, Kapil Singh, and Tao Xie. 2019. PolicyLint:

Investigating Internal Privacy Policy Contradictions on Google Play. In 28th
USENIX security symposium (USENIX security 19). USENIX, Berkeley, CA, USA,
585–602.

[7] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck,

Bradley Reaves, Kapil Singh, and Serge Egelman. 2020. Actions Speak Louder

than Words:Entity-Sensitive Privacy Policy and Data Flow Analysis with

PoliCheck. In 29th USENIX Security Symposium (USENIX Security 20). USENIX,
Berkeley, CA, USA, 985–1002.

[8] Apple. 2023. Notifications Overview. Apple Developer. https://

developer.apple.com/notifications/.

[9] Apple. 2023. Push Token Requests. https://www.apple.com/legal/transparency/

push-token.html. (Accessed on 06/01/2024).

[10] Apple Inc. 2023. Generating a remote notification . https://developer.apple.com/

documentation/usernotifications/setting_up_a_remote_notification_server/

generating_a_remote_notification. (Accessed on 10/10/2023).

[11] Internet Archive. 2023. Wayback Machine. https://archive.org/. (Accessed on

10/10/2023).

[12] Kayce Basques and Matt Gaunt. 2023. Push notifications overview. https:

//web.dev/articles/push-notifications-overview. (Accessed on 10/10/2023).

[13] Android Developers Blog. 2018. Project Capillary: End-to-end encryption for

push messaging, simplified. https://android-developers.googleblog.com/2018/

06/project-capillary-end-to-end-encryption.html. (Accessed on 10/10/2023).

[14] Duc Bui, Kang G Shin, Jong-Min Choi, and Junbum Shin. 2021. Automated

Extraction and Presentation of Data Practices in Privacy Policies. Proceedings
on Privacy Enhancing Technologies (PoPETs) 2021, 2 (2021), 88–110.

[15] L. Cavallaro, P. Saxena, and R. Sekar. 2008. On the Limits of Information Flow

Techniques for Malware Analysis and Containment. In Proc. of DIMVA. Springer-
Verlag, 143–163. http://dx.doi.org/10.1007/978-3-540-70542-0_8

[16] Ann Cavoukian. 2009. Privacy by design. (2009).

[17] Yangyi Chen, Tongxin Li, XiaoFeng Wang, Kai Chen, and Xinhui Han. 2015.

Perplexed messengers from the cloud: Automated security analysis of push-

messaging integrations. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 1260–1272.

[18] U.S. Federal Trade Commission. 2021. FloHealth, Inc. https://www.ftc.gov/legal-

library/browse/cases-proceedings/192-3133-flo-health-inc.

[19] U.S. Federal Trade Commission. 2024. Avast, Ltd. https://www.ftc.gov/system/

files/ftc_gov/pdf/Complaint-Avast.pdf.

[20] Cox, Joseph. 2023. Here’s a Warrant Showing the U.S. Government is Moni-

toring Push Notifications. https://www.404media.co/us-government-warrant-

monitoring-push-notifications-apple-google-yahoo/. (Accessed on 06/01/2024).

[21] Cybersecurity and Infrastructure Security Agency (CISA). 2023. Shift-

ing the Balance of Cybersecurity Risk: Principles and Approaches for Se-

cure by Design Software. https://www.cisa.gov/sites/default/files/2023-10/

SecureByDesign_1025_508c.pdf. (Accessed on 06/01/2024).

[22] Samsung Electronics. 2023. Samsung Push Service. https://play.google.com/

store/apps/details?id=com.sec.spp.push. (Accessed on 06/01/2024).

[23] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.

2010. TaintDroid: An Information-flow Tracking System for Realtime Privacy

Monitoring on Smartphones. In Proc. of the 9th USENIX conference on Operating
systems design and implementation (OSDI). 393–407.

[24] Ming Fan, Le Yu, Sen Chen, Hao Zhou, Xiapu Luo, Shuyue Li, Yang Liu, Jun Liu,

and Ting Liu. 2020. An empirical evaluation of GDPR compliance violations in

Android mHealth apps. In 2020 IEEE 31st international symposium on software
reliability engineering (ISSRE). IEEE, New York, NY, USA, 253–264.

[25] Federal Trade Commision (FTC). 2020. FTC Requires Zoom to Enhance

its Security Practices as Part of Settlement. https://www.ftc.gov/news-

events/news/press-releases/2020/11/ftc-requires-zoom-enhance-its-security-

practices-part-settlement. (Accessed on 01/01/2024).

[26] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. 2012. Android

permissions: user attention, comprehension, and behavior. In Proceedings of
the 8th Symposium on Usable Privacy and Security (Washington, D.C.) (SOUPS
’12). ACM, New York, NY, USA, Article 3, 14 pages. https://doi.org/10.1145/

2335356.2335360

[27] European Union Agency for Cybersecurity (ENISA). 2023. Engineering Personal

Data Sharing. https://www.enisa.europa.eu/publications/engineering-personal-

data-sharing. (Accessed on 06/01/2024).

[28] Frederick P. Brooks, Jr. 1975. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley.

[29] Frida. 2022. https://frida.re/.

[30] C. Gibler, J. Crussell, J. Erickson, and H. Chen. 2012. AndroidLeaks: Automati-

cally Detecting Potential Privacy Leaks in Android Applications on a Large Scale.

In Proc. of the 5th international conference on Trust and Trustworthy Computing
(TRUST). Springer-Verlag, 291–307.

[31] GizChina. 2023. HARMONYOS IS NOW FIRMLY THE THIRD LARGEST

MOBILE PHONE OPERATING SYSTEM. https://www.gizchina.com/2023/

05/20/harmonyos-is-now-firmly-the-third-largest-mobile-phone-operating-

system/. (Accessed on 01/01/2024).

[32] Google. 2023. BaseBundle. Android Developers. https://developer.android.com/

reference/android/os/BaseBundle.

[33] Google. 2023. Design for Safety. Google Developers. https://

developer.android.com/quality/privacy-and-security.

[34] Google. 2023. FirebaseMessagingService. https://firebase.google.com/docs/

reference/android/com/google/firebase/messaging/FirebaseMessagingService.

(Accessed on 06/01/2024).

[35] Google. 2023. Play Console Help: Provide information for Google Play’s

Data safety section. https://support.google.com/googleplay/android-developer/

answer/10787469. (Accessed on 06/01/2024).

[36] Google for Developers. 2024. About FCM messages. Developer documenta-

tion for Firebase. https://firebase.google.com/docs/cloud-messaging/concept-

options.

[37] M. I. Gordon, D. Kim, J. Perkins, Gilhamy, N. Nguyenz, and M. Rinard. 2015.

Information-Flow Analysis of Android Applications in DroidSafe. In Proc. of
NDSS Symposium.

[38] Marit Hansen, Meiko Jensen, and Martin Rost. 2015. Protection goals for privacy

engineering. In 2015 IEEE Security and Privacy Workshops. IEEE, 159–166.
[39] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G Shin,

and Karl Aberer. 2018. Polisis: Automated analysis and presentation of privacy

policies using deep learning. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX, Berkeley, CA, USA, 531–548.

[40] Harwell, Drew and Schaffer, Aaron. 2024. The FBI’s new tactic: Catching

suspects with push alerts. https://www.washingtonpost.com/technology/2024/

02/29/push-notification-surveillance-fbi/. (Accessed on 06/01/2024).

[41] Sangwon Hyun, Junsung Cho, Geumhwan Cho, and Hyoungshick Kim. 2018.

Design and analysis of push notification-based malware on android. Security
and Communication Networks 2018 (2018).

[42] JusTalk. 2023. Is it safe to use JusTalk? https://web.archive.org/web/

20230407183707/https://justalk.com/support/general/g6. (Accessed on

10/10/2023).

[43] P. G. Kelley, L. F. Cranor, and N. Sadeh. 2013. Privacy as part of the app decision-

making process. In Proceedings of the SIGCHI conference on human factors in
computing systems. 3393–3402.

[44] J. Kim, Y. Yoon, K. Yi, and J. Shin. 2012. ScanDal: Static Analyzer for Detecting

Privacy Leaks in Android Applications. IEEE Workshop on Mobile Security
Technologies (MoST) (2012).

[45] Simon Koch, Malte Wessels, Benjamin Altpeter, Madita Olvermann, and Martin

Johns. 2022. Keeping privacy labels honest. Proceedings on Privacy Enhancing
Technologies 4, 486-506 (2022), 2–2.

[46] Konev, Max. 2022. Statement on the Reuters Story Regarding Push-

woosh. https://blog.pushwoosh.com/blog/statement-on-the-reuters-story-

regarding-pushwoosh/. (Accessed on 06/01/2024).

[47] Hayoung Lee, Taeho Kang, Sangho Lee, Jong Kim, and Yoonho Kim. 2014.

Punobot: Mobile botnet using push notification service in android. In Information
Security Applications: 14th International Workshop, WISA 2013, Jeju Island, Korea,
August 19-21, 2013, Revised Selected Papers 14. Springer, 124–137.

[48] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad Naveed,

XiaoFeng Wang, and Xinhui Han. 2014. Mayhem in the push clouds: Under-

standing and mitigating security hazards in mobile push-messaging services. In

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security. 978–989.

[49] Thomas Linden, Rishabh Khandelwal, Hamza Harkous, and Kassem Fawaz. 2018.

The privacy policy landscape after the GDPR. arXiv preprint arXiv:1809.08396
(2018), 1–18.

14

https://docs.airship.com/platform/mobile/setup/sdk/android/
https://docs.airship.com/platform/mobile/setup/sdk/android/
https://doi.org/10.1109/ACSAC.2001.991552
https://doi.org/10.1109/ACSAC.2001.991552
https://developer.apple.com/notifications/
https://developer.apple.com/notifications/
https://www.apple.com/legal/transparency/push-token.html
https://www.apple.com/legal/transparency/push-token.html
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/generating_a_remote_notification
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/generating_a_remote_notification
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/generating_a_remote_notification
https://archive.org/
https://web.dev/articles/push-notifications-overview
https://web.dev/articles/push-notifications-overview
https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html
https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html
http://dx.doi.org/10.1007/978-3-540-70542-0_8
https://www.ftc.gov/legal-library/browse/cases-proceedings/192-3133-flo-health-inc
https://www.ftc.gov/legal-library/browse/cases-proceedings/192-3133-flo-health-inc
https://www.ftc.gov/system/files/ftc_gov/pdf/Complaint-Avast.pdf
https://www.ftc.gov/system/files/ftc_gov/pdf/Complaint-Avast.pdf
https://www.404media.co/us-government-warrant-monitoring-push-notifications-apple-google-yahoo/
https://www.404media.co/us-government-warrant-monitoring-push-notifications-apple-google-yahoo/
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf
https://play.google.com/store/apps/details?id=com.sec.spp.push
https://play.google.com/store/apps/details?id=com.sec.spp.push
https://www.ftc.gov/news-events/news/press-releases/2020/11/ftc-requires-zoom-enhance-its-security-practices-part-settlement
https://www.ftc.gov/news-events/news/press-releases/2020/11/ftc-requires-zoom-enhance-its-security-practices-part-settlement
https://www.ftc.gov/news-events/news/press-releases/2020/11/ftc-requires-zoom-enhance-its-security-practices-part-settlement
https://doi.org/10.1145/2335356.2335360
https://doi.org/10.1145/2335356.2335360
https://www.enisa.europa.eu/publications/engineering-personal-data-sharing
https://www.enisa.europa.eu/publications/engineering-personal-data-sharing
https://frida.re/
https://www.gizchina.com/2023/05/20/harmonyos-is-now-firmly-the-third-largest-mobile-phone-operating-system/
https://www.gizchina.com/2023/05/20/harmonyos-is-now-firmly-the-third-largest-mobile-phone-operating-system/
https://www.gizchina.com/2023/05/20/harmonyos-is-now-firmly-the-third-largest-mobile-phone-operating-system/
https://developer.android.com/reference/android/os/BaseBundle
https://developer.android.com/reference/android/os/BaseBundle
https://developer.android.com/quality/privacy-and-security
https://developer.android.com/quality/privacy-and-security
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService
https://support.google.com/googleplay/android-developer/answer/10787469
https://support.google.com/googleplay/android-developer/answer/10787469
https://firebase.google.com/docs/cloud-messaging/concept-options
https://firebase.google.com/docs/cloud-messaging/concept-options
https://www.washingtonpost.com/technology/2024/02/29/push-notification-surveillance-fbi/
https://www.washingtonpost.com/technology/2024/02/29/push-notification-surveillance-fbi/
https://web.archive.org/web/20230407183707/https://justalk.com/support/general/g6
https://web.archive.org/web/20230407183707/https://justalk.com/support/general/g6
https://blog.pushwoosh.com/blog/statement-on-the-reuters-story-regarding-pushwoosh/
https://blog.pushwoosh.com/blog/statement-on-the-reuters-story-regarding-pushwoosh/

How Secure Messaging Apps Leak Sensitive Data to Push Notification Services Proceedings on Privacy Enhancing Technologies YYYY(X)

[50] Tianming Liu, HaoyuWang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu. 2019.

Dapanda: Detecting aggressive push notifications in android apps. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 66–78.

[51] Pierpaolo Loreti, Lorenzo Bracciale, and Alberto Caponi. 2018. Push attack:

binding virtual and real identities usingmobile push notifications. Future Internet
10, 2 (2018), 13.

[52] Jiadong Lou, Xiaohan Zhang, Yihe Zhang, Xinghua Li, Xu Yuan, and Ning Zhang.

2023. Devils in Your Apps: Vulnerabilities and User Privacy Exposure in Mobile

Notification Systems. In 2023 53rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 28–41.

[53] Mary Madden. 2014. Public Perceptions of Privacy and Security in the Post-

Snowden Era. Pew Research Center. https://www.pewresearch.org/internet/

2014/11/12/public-privacy-perceptions/.

[54] Karl Marx. 1875. Critique of the Gotha program.

[55] Marshall McLuhan. 1964. Understanding Media. (1964).

[56] Microsoft. 2023. What are Skype Private Conversations? https:

//web.archive.org/web/20230606085952/https://support.skype.com/en/

faq/fa34824/what-are-skype-private-conversations. (Accessed on 10/10/2023).

[57] Ehimare Okoyomon, Nikita Samarin, Primal Wijesekera, Amit Elazari Bar On,

Narseo Vallina-Rodriguez, Irwin Reyes, Álvaro Feal, Serge Egelman, et al. 2019.

On the ridiculousness of notice and consent: Contradictions in app privacy

policies. InWorkshop on Technology and Consumer Protection (ConPro 2019), in
conjunction with the 39th IEEE Symposium on Security and Privacy. IEEE, New
York, NY, USA.

[58] OneSignal. 2023. Firebase Cloud Messaging (FCM) Compared to OneSig-

nal. https://web.archive.org/web/20230603040346/https://onesignal.com/blog/

firebase-vs-onesignal/. (Accessed on 10/10/2023).

[59] OneSignal. 2023. What is a push notifications service and how does it

work? https://onesignal.com/blog/what-is-a-push-notifications-service-and-

how-does-it-work/. (Accessed on 2/23/24).

[60] Frank Pallas, Katharina Koerner, Isabel Barberá, Jaap-Henk Hoepman, Meiko

Jensen, Nandita Rao Narla, Nikita Samarin, Max-R Ulbricht, Isabel Wagner, Kim

Wuyts, et al. 2024. Privacy Engineering From Principles to Practice: A Roadmap.

IEEE Security & Privacy 22, 2 (2024), 86–92.

[61] James Pearson and Marisa Taylor. 2022. Russian software dis-

guised as American finds its way into U.S. Army, CDC apps.

https://www.reuters.com/technology/exclusive-russian-software-disguised-

american-finds-its-way-into-us-army-cdc-2022-11-14/. (Accessed on

06/01/2024).

[62] Google Play. 2023. WeChat: About this app. https://web.archive.org/

web/20230323082225/https://play.google.com/store/apps/details?id=

com.tencent.mm&hl=en_US&gl=US. (Accessed on 10/10/2023).

[63] Pusher. 2023. Configure FCM. https://pusher.com/docs/beams/getting-started/

android/configure-fcm/. (Accessed on 10/10/2023).

[64] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann,

and P. Gill. 2017. Studying TLS usage in Android apps. In Proceedings of the 13th
International Conference on emerging Networking EXperiments and Technologies.
350–362.

[65] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas

Razaghpanah, Narseo Vallina-Rodriguez, Serge Egelman, et al. 2018. “Won’t

somebody think of the children?” examining COPPA compliance at scale. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs) 2018, 3 (2018), 63–83.

[66] David Rodriguez, Akshath Jain, Jose M Del Alamo, and Norman Sadeh. 2023.

Comparing Privacy Label Disclosures of Apps Published in both the App Store

and Google Play Stores. In 2023 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE, 150–157.

[67] SafeUM. 2023. Privacy Policy. https://web.archive.org/web/20230220213832/

https://safeum.com/privacypolicy.html. (Accessed on 10/10/2023).

[68] Nikita Samarin, Shayna Kothari, Zaina Siyed, Oscar Bjorkman, Reena Yuan, Pri-

mal Wijesekera, Noura Alomar, Jordan Fischer, Chris Hoofnagle, and Serge Egel-

man. 2023. Lessons in VCR Repair: Compliance of Android App Developers with

the California Consumer Privacy Act (CCPA). arXiv preprint arXiv:2304.00944
(2023).

[69] Jingyu Shi. 2023. Notifying your users with FCM. https://android-

developers.googleblog.com/2018/09/notifying-your-users-with-fcm.html. (Ac-

cessed on 10/10/2023).

[70] Signal. 2023. Grand jury subpoena for Signal user data, Central District of Cali-

fornia (again!). https://web.archive.org/web/20230921202338/https://signal.org/

bigbrother/cd-california-grand-jury/. (Accessed on 10/10/2023).

[71] Signal. 2023. Signal. https://signal.org/. (Accessed on 10/10/2023).

[72] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Kr-

ishnan, Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. 2016. Toward a

framework for detecting privacy policy violations in android application code.

In Proceedings of the 38th International Conference on Software Engineering. ACM,

New York, NY, USA, 25–36.

[73] Ivan Slobozhan, Tymofii Brik, and Rajesh Sharma. 2023. Differentiable charac-

teristics of Telegram mediums during protests in Belarus 2020. Social Network
Analysis and Mining 13, 1 (2023), 19.

[74] Adam Smith. 1776. An Inquiry Into the Nature and Causes of the Wealth of
Nations. Strahan and Cadell, London, UK. https://books.google.com/books?id=

mt1SAAAAcAAJ

[75] StatCounter Global Stats. 2023. Android Version Market ShareWorldwide. https:

//gs.statcounter.com/android-version-market-share/all/worldwide/2023. (Ac-

cessed on 06/01/2024).

[76] Anne Stopper and Jen Caltrider. 2023. See no evil: Loopholes in Google’s data

safety labels keep companies in the clear and consumers in the dark. mozilla

foundation.

[77] J. Tan, K. Nguyen, M. Theodorides, H. Negron-Arroyo, C. Thompson, S. Egel-

man, and D. Wagner. 2014. The Effect of Developer-Specified Explanations for

Permission Requests on Smartphone User Behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.

[78] Telegram. 2023. Telegram Messenger. https://telegram.org/. (Accessed on

10/10/2023).

[79] Telegram-FOSS on GitHub. 2024. Notifications. https://github.com/Telegram-

FOSS-Team/Telegram-FOSS/blob/master/Notifications.md. (Accessed on

06/01/2024).

[80] The Drum. 2023. WhatsApp’s 3D billboard touts privacy features.

https://www.thedrum.com/news/2022/10/10/whatsapp-s-3d-billboard-

touts-privacy-features. (Accessed on 10/10/2023).

[81] The Verge. 2023. Now Mark Zuckerberg’s making fun of Apple for iMessage,

too. https://www.theverge.com/2022/10/17/23409018/mark-zuckerberg-meta-

whatsapp-imessage-privacy-security-ads. (Accessed on 10/10/2023).

[82] The White House. 2023. National Cybersecurity Strategy. https://

www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-

Strategy-2023.pdf. (Accessed on 06/01/2024).

[83] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King. 2013. When

It’s Better to Ask Forgiveness than Get Permission: Designing Usable Audit

Mechanisms for Mobile Permissions. In Proceedings of the 2013 Symposium on
Usable Privacy and Security (SOUPS).

[84] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman, D. Wagner, N. Good, and

J. Chen. 2017. Turtle Guard: Helping Android Users Apply Contextual Privacy

Preferences. In Thirteenth Symposium on Usable Privacy and Security (SOUPS
2017). USENIX Association, Santa Clara, CA, 145–162. https://www.usenix.org/

conference/soups2017/technical-sessions/presentation/tsai

[85] Zeynep Tufekci. 2017. Twitter and tear gas: The power and fragility of networked
protest. Yale University Press.

[86] UnifiedPush. 2023. UnifiedPush. https://unifiedpush.org/. (Accessed on

10/10/2023).

[87] United States District Court for the Central District of Califor-

nia. 2022. Application for a Warrant re: Case No. 2:22-MJ-03119.

https://www.documentcloud.org/documents/24192891-search-warrant-

for-google-account-for-push-notification-data. (Accessed on 06/01/2024).

[88] United States District Court for the District of Columbia. 2021. Application for

a Warrant re: Case No. 21-sc-270. https://www.documentcloud.org/documents/

24192911-6d68977d-f8ef-4080-9742-290cff8a6c28. (Accessed on 06/01/2024).

[89] Aleksandra Urman, Justin Chun-ting Ho, and Stefan Katz. 2021. Analyzing

protest mobilization on Telegram: The case of 2019 anti-extradition bill move-

ment in Hong Kong. Plos one 16, 10 (2021), e0256675.
[90] U.S. Congress. 1986. H.R.4952 - Electronic Communications Privacy Act of 1986

. https://www.congress.gov/bill/99th-congress/house-bill/4952. (Accessed on

10/10/2023).

[91] Viber. 2023. Privacy Notice for California Residents. https://web.archive.org/

web/20230310001732/https://www.viber.com/en/terms/ccpa-privacy-rights/.

(Accessed on 10/10/2023).

[92] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D Breaux,

and Jianwei Niu. 2018. Guileak: Tracing privacy policy claims on user input

data for android applications. In Proceedings of the 40th International Conference
on Software Engineering. ACM, New York, NY, USA, 37–47.

[93] Ian Warren, Andrew Meads, Satish Srirama, Thiranjith Weerasinghe, and Car-

los Paniagua. 2014. Push notification mechanisms for pervasive smartphone

applications. IEEE Pervasive Computing 13, 2 (2014), 61–71.

[94] Mark Wickham. 2018. Push Messaging. Practical Android: 14 Complete Projects
on Advanced Techniques and Approaches (2018), 135–172.

[95] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David

Wagner, and Konstantin Beznosov. 2015. Android permissions remystified: A

field study on contextual integrity. In 24th USENIX Security Symposium (USENIX
Security 15). 499–514.

[96] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman,

David Wagner, and Konstantin Beznosov. 2017. The feasibility of dynamically

granted permissions: Aligning mobile privacy with user preferences. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, New York, NY, USA, 1077–

1093.

15

https://www.pewresearch.org/internet/2014/11/12/public-privacy-perceptions/
https://www.pewresearch.org/internet/2014/11/12/public-privacy-perceptions/
https://web.archive.org/web/20230606085952/https://support.skype.com/en/faq/fa34824/what-are-skype-private-conversations
https://web.archive.org/web/20230606085952/https://support.skype.com/en/faq/fa34824/what-are-skype-private-conversations
https://web.archive.org/web/20230606085952/https://support.skype.com/en/faq/fa34824/what-are-skype-private-conversations
https://web.archive.org/web/20230603040346/https://onesignal.com/blog/firebase-vs-onesignal/
https://web.archive.org/web/20230603040346/https://onesignal.com/blog/firebase-vs-onesignal/
https://onesignal.com/blog/what-is-a-push-notifications-service-and-how-does-it-work/
https://onesignal.com/blog/what-is-a-push-notifications-service-and-how-does-it-work/
https://www.reuters.com/technology/exclusive-russian-software-disguised-american-finds-its-way-into-us-army-cdc-2022-11-14/
https://www.reuters.com/technology/exclusive-russian-software-disguised-american-finds-its-way-into-us-army-cdc-2022-11-14/
https://web.archive.org/web/20230323082225/https://play.google.com/store/apps/details?id=com.tencent.mm&hl=en_US&gl=US
https://web.archive.org/web/20230323082225/https://play.google.com/store/apps/details?id=com.tencent.mm&hl=en_US&gl=US
https://web.archive.org/web/20230323082225/https://play.google.com/store/apps/details?id=com.tencent.mm&hl=en_US&gl=US
https://pusher.com/docs/beams/getting-started/android/configure-fcm/
https://pusher.com/docs/beams/getting-started/android/configure-fcm/
https://web.archive.org/web/20230220213832/https://safeum.com/privacypolicy.html
https://web.archive.org/web/20230220213832/https://safeum.com/privacypolicy.html
https://android-developers.googleblog.com/2018/09/notifying-your-users-with-fcm.html
https://android-developers.googleblog.com/2018/09/notifying-your-users-with-fcm.html
https://web.archive.org/web/20230921202338/https://signal.org/bigbrother/cd-california-grand-jury/
https://web.archive.org/web/20230921202338/https://signal.org/bigbrother/cd-california-grand-jury/
https://signal.org/
https://books.google.com/books?id=mt1SAAAAcAAJ
https://books.google.com/books?id=mt1SAAAAcAAJ
https://gs.statcounter.com/android-version-market-share/all/worldwide/2023
https://gs.statcounter.com/android-version-market-share/all/worldwide/2023
https://telegram.org/
https://github.com/Telegram-FOSS-Team/Telegram-FOSS/blob/master/Notifications.md
https://github.com/Telegram-FOSS-Team/Telegram-FOSS/blob/master/Notifications.md
https://www.thedrum.com/news/2022/10/10/whatsapp-s-3d-billboard-touts-privacy-features
https://www.thedrum.com/news/2022/10/10/whatsapp-s-3d-billboard-touts-privacy-features
https://www.theverge.com/2022/10/17/23409018/mark-zuckerberg-meta-whatsapp-imessage-privacy-security-ads
https://www.theverge.com/2022/10/17/23409018/mark-zuckerberg-meta-whatsapp-imessage-privacy-security-ads
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/tsai
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/tsai
https://unifiedpush.org/
https://www.documentcloud.org/documents/24192891-search-warrant-for-google-account-for-push-notification-data
https://www.documentcloud.org/documents/24192891-search-warrant-for-google-account-for-push-notification-data
https://www.documentcloud.org/documents/24192911-6d68977d-f8ef-4080-9742-290cff8a6c28
https://www.documentcloud.org/documents/24192911-6d68977d-f8ef-4080-9742-290cff8a6c28
https://www.congress.gov/bill/99th-congress/house-bill/4952
https://web.archive.org/web/20230310001732/https://www.viber.com/en/terms/ccpa-privacy-rights/
https://web.archive.org/web/20230310001732/https://www.viber.com/en/terms/ccpa-privacy-rights/

Proceedings on Privacy Enhancing Technologies YYYY(X) N. Samarin et al.

[97] PrimalWijesekera, Joel Reardon, Irwin Reyes, Lynn Tsai, Jung-Wei Chen, Nathan

Good, David Wagner, Konstantin Beznosov, and Serge Egelman. 2018. Contex-

tualizing privacy decisions for better prediction (and protection). In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. 1–13.

[98] Wikipedia. 2023. Chicken Gun. https://en.wikipedia.org/wiki/Chicken_gun.

[99] Kim Wuyts, Laurens Sion, and Wouter Joosen. 2020. Linddun go: A lightweight

approach to privacy threat modeling. In 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, 302–309.

[100] Ron Wyden. 2023. Wyden Smartphone Push Notification Surveil-

lance Letter. https://www.wyden.senate.gov/imo/media/doc/

wyden_smartphone_push_notification_surveillance_letter.pdf. (Accessed on

01/01/2024).

[101] Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan, Xiaojing Liao, and Luyi

Xing. 2022. Lalaine: Measuring and characterizing non-compliance of apple

privacy labels at scale. arXiv preprint arXiv:2206.06274 (2022).
[102] Zhi Xu and Sencun Zhu. 2012. Abusing Notification Services on Smartphones

for Phishing and Spamming.. In WOOT. 1–11.
[103] Sebastian Zimmeck, Rafael Goldstein, and David Baraka. 2021. PrivacyFlash

Pro: Automating Privacy Policy Generation for Mobile Apps.. In NDSS. Internet
Society, Reston, VA, USA, 18 pages.

[104] Sebastian Zimmeck, Peter Story, Daniel Smullen, Abhilasha Ravichander, Ziqi

Wang, Joel R Reidenberg, N Cameron Russell, and Norman Sadeh. 2019. MAPS:

Scaling privacy compliance analysis to a million apps. Proceedings on Privacy
Enhancing Technologies (PoPETs) 2019, 3 (2019), 66–86.

[105] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian

Schaub, Shomir Wilson, Norman M Sadeh, Steven M Bellovin, and Joel R Rei-

denberg. 2017. Automated Analysis of Privacy Requirements for Mobile Apps..

In NDSS. Internet Society, Reston, VA, USA, 15 pages.

Data Type Description

Device or
other IDs

Identifiers that relate to an individual

device, browser or app. For example,

an IMEI number, MAC address, Wi-

devine Device ID, Firebase installa-

tion ID, or advertising identifier.

User IDs
Identifiers that relate to an identifiable

person. For example, an account ID,

account number, or account name.

Name How a user refers to themselves, such

as their first or last name, or nickname.

Phone
number A user’s phone number.

Messages
Any other types of messages. For

example, instant messages or chat

content.

Table 4: Google Play Store’s data types applicable to our study.
Note that Google refers to the ‘Messages’ data type as ‘Other
in-app messages.’

A DATA TYPES
Table 4 enumerates the data types that we searched for during

our analysis of Android apps. Google defines and uses these data

types to populate the information presented to users in the form of

privacy labels in the app’s listing on Google Play Store [35].

B CODE ANALYSIS WORKFLOW
We used this set of questions to analyze the source code of apps in

our data set. These questions can also assist with data flowmapping,

or in other words, tracing data contained in a push notification from

its creation until the notification is displayed to the user.

• Does the app’s AndroidManifest.xml register a service that
extends FirebaseMessagingService?

• Locate the Java .java (or Kotlin .kt) source file corresponding

to the registered service.

• Which FCM methods (e.g., onMessageReceived(),
onNewToken(), etc.) does the service override?

• The onMessageReceived() method gets invoked when the

client app receives an FCM push notification. Does the ser-

vice override onMessageReceived() method?

• Data payload contained in an FCM push notification can be

accessed by calling remoteMessage.getData(). Does the
onMessageReceived()method invoke getData() on its ar-

gument of type RemoteMessage?
• Is there any indication that RemoteMessage contains sensi-
tive data, based on the names of the keys or logging?

• Trace the code execution from the onMessageReceived()
method until the message is displayed to the user.

• Does RemoteMessage get passed as a parameter to any func-

tion?

• What mechanisms (if any) are in place to ensure that notifi-

cation contents do not get leaked to Google’s FCM server?

16

https://en.wikipedia.org/wiki/Chicken_gun
https://www.wyden.senate.gov/imo/media/doc/wyden_smartphone_push_notification_surveillance_letter.pdf
https://www.wyden.senate.gov/imo/media/doc/wyden_smartphone_push_notification_surveillance_letter.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile Push Notifications
	2.2 FCM Alternatives
	2.3 Threat Model

	3 Related Work
	3.1 Risks of Push Notifications
	3.2 Mobile App Analysis
	3.3 Analysis of Privacy Disclosures

	4 Methods
	4.1 App Selection
	4.2 App Analysis
	4.3 Privacy Disclosure Analysis
	4.4 Ethical Research

	5 Results
	5.1 App Analysis
	5.2 Mitigation Strategies
	5.3 Privacy Disclosure Analysis

	6 Discussion
	6.1 Recommendations

	7 Responsible Disclosure
	8 Limitations
	Acknowledgments
	References
	A Data Types
	B Code Analysis Workflow

